Representations of solutions to Fokker-Planck-Kolmogorov equations with coefficients of low regularity

被引:3
|
作者
Bogachev, Vladimir, I [1 ]
Shaposhnikov, Stanislav, V [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow, Russia
[2] Natl Res Univ Higher Sch Econ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Fokker-Planck-Kolmogorov equation; Double divergence form equation; Representation of solutions; TRANSITION-PROBABILITIES; PARABOLIC EQUATIONS; CONTINUITY;
D O I
10.1007/s00028-019-00532-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a formula representing solutions to parabolic Fokker-Planck-Kolmogorov equations with coefficients of low regularity. This formula is applied for proving the continuity of solution densities under broad assumptions and obtaining upper bounds for them. In the case of diffusion coefficients of class VMOx we show that the solution density is locally integrable to any power.
引用
收藏
页码:355 / 374
页数:20
相关论文
共 50 条
  • [1] Representations of solutions to Fokker–Planck–Kolmogorov equations with coefficients of low regularity
    Vladimir I. Bogachev
    Stanislav V. Shaposhnikov
    [J]. Journal of Evolution Equations, 2020, 20 : 355 - 374
  • [2] Integrability and Continuity of Solutions to Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2017, 96 (03) : 583 - 586
  • [3] On Sobolev regularity of solutions to Fokker-Planck-Kolmogorov equations with drifts in L1
    Bogachev, Vladimir, I
    Popova, Svetlana N.
    Shaposhnikov, Stanislav, V
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2019, 30 (01) : 205 - 221
  • [4] Superposition Principle for the Fokker-Planck-Kolmogorov Equations with Unbounded Coefficients
    Krasovitskii, T. I.
    Shaposhnikov, S. V.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2022, 56 (04) : 282 - 298
  • [5] Fokker-Planck-Kolmogorov Equations with a Parameter
    Bogachev, V. I.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2023, 108 (02) : 357 - 362
  • [6] Stationary Fokker-Planck-Kolmogorov Equations
    Bogachev, Vladimir, I
    [J]. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 3 - 24
  • [7] On Sobolev Classes Containing Solutions to Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Popova, S. N.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2018, 98 (02) : 498 - 501
  • [8] Estimates for Solutions to Fokker-Planck-Kolmogorov Equations with Integrable Drifts
    Bogachev, V. I.
    Shaposhnikov, A. V.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2018, 98 (03) : 559 - 563
  • [9] On the Superposition Principle for Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2019, 100 (01) : 363 - 366
  • [10] Nonlinear Fokker-Planck-Kolmogorov Equations for Measures
    Shaposhnikov, Stanislav, V
    [J]. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 367 - 379