EM algorithm;
Truncated and Censored Count;
Imputation;
Population Size Estimation;
D O I:
10.1016/j.procs.2016.05.109
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
The aim of this study is to find the maximum likelihood estimate (MLE) among frequency count data by using the expectation-maximization (EM) algorithm in which is useful to impute the missing or hidden values. Two forms of missing count data in both zero truncation and right censoring situations are illustrated for estimating the population size on drug use. The results show that a truncated and censored Poisson likelihood performs well with good estimates corresponding to the EM algorithm with a numerically stable convergence, a monotone increasing likelihood, and providing local maxima, so the expected global maximum of the MLE depends on the initial value. (C) 2016 The Authors. Published by Elsevier B.V.
机构:
Samsung Elect, Innovat Ctr, Hwasung 18448, Gyeonggi, South KoreaSamsung Elect, Innovat Ctr, Hwasung 18448, Gyeonggi, South Korea
Barde, Stephane
论文数: 引用数:
h-index:
机构:
Ko, Young Myoung
Shin, Hayong
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, 291 Daehak Ro, Daejeon 34141, South KoreaSamsung Elect, Innovat Ctr, Hwasung 18448, Gyeonggi, South Korea
机构:
Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USAUniv Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
Lee, Gyemin
Scott, Clayton
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USAUniv Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA