Rotation-invariant texture retrieval using wavelet-based hidden Markov trees

被引:17
|
作者
Rallabandi, Venkateswara Rao [2 ]
Rallabandi, V. P. Subramanyam [1 ]
机构
[1] Natl Brain Res Ctr Deemed Univ, Dept Computat Neurosci & Neuroimaging, Gurgaon 122050, Haryana, India
[2] Univ So Queensland, Dept Comp Syst & Telecommun, Toowoomba, Qld 4350, Australia
关键词
multistated waveket-based hidden Markov trees; Gaussian mixture model; Kullback-Leibler distance;
D O I
10.1016/j.sigpro.2008.04.019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a novel approach for rotation-invariant texture retrieval using multistated wavelet-based hidden Markov trees (MWHMT). We propose a new model to capture statistical dependencies across three independent wavelet subbands. The proposed approach has been applied to CBIR application, rotation-invariant texture retrieval. The feature extraction of the texture is then performed using the signature of the texture, which is generated from the wavelet coefficients of each subband across each scale. We used Kullback-Leibler (KL) distance measure to find the similarity between textures. We have tested our approach for Brodatz texture database and evaluate the retrieval performance in terms of precision and recall. The experimental results show that the proposed method outperforms earlier wavelet-based methods. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2593 / 2598
页数:6
相关论文
共 50 条
  • [1] Rotation invariant texture retrieval using steerable wavelet-domain hidden Markov models
    Do, MN
    Lozano, AC
    Vetterli, M
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 274 - 285
  • [2] Rotation-invariant texture image retrieval using rotated complex wavelet filters
    Kokare, Manesh
    Biswas, P. K.
    Chatterji, B. N.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (06): : 1273 - 1282
  • [3] Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models
    Do, MN
    Vetterli, M
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2002, 4 (04) : 517 - 527
  • [4] Rotation-invariant image retrieval using hidden Markov tree for remote sensing data
    Miao Congcong
    Zhao Yindi
    [J]. MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS V, 2014, 9263
  • [5] Rotation-invariant Texture Retrieval Based on Complementary Features
    Hu, Xuelong
    Wang, Gang
    Wu, Huining
    Lu, Huimin
    [J]. 2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 311 - 314
  • [6] Image interpolation using wavelet-based Hidden Markov trees
    Kinebuchi, K
    Muresan, DD
    Parks, HW
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 1957 - 1960
  • [7] Sub-Gaussian rotation-invariant features for steerable wavelet-based image retrieval
    Tzagkarakis, G
    Beferull-Lozano, B
    Tsakalides, P
    [J]. CONFERENCE RECORD OF THE THIRTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 2004, : 397 - 401
  • [8] The Image Retrieval Based on Scale and Rotation-Invariant Texture Features of Gabor Wavelet Transform
    Gang, Chen
    Ning, Chen
    Xia, Lin
    [J]. 2013 FOURTH WORLD CONGRESS ON SOFTWARE ENGINEERING (WCSE), 2013, : 340 - 344
  • [9] New Rotation-Invariant Texture Analysis Technique Using Radon Transform and Hidden Markov Models
    Jalil, Abdul
    Manzar, Anwar
    Cheema, Tanweer A.
    Qureshi, Ijaz M.
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (12): : 2906 - 2909
  • [10] Color texture analysis using the wavelet-based hidden Markov model
    Xu, Q
    Yang, H
    Ding, SY
    [J]. PATTERN RECOGNITION LETTERS, 2005, 26 (11) : 1710 - 1719