Tracking multiple targets using a particle filter representation of the joint multitarget probability density

被引:16
|
作者
Kreucher, C [1 ]
Kastella, K [1 ]
Hero, AO [1 ]
机构
[1] Veridians Ann Arbor Res & Dev Ctr, Ann Arbor, MI USA
关键词
nonlinear filtering; particle filtering; multi-target tracking;
D O I
10.1117/12.502696
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of tracking multiple moving targets by estimating their joint multitarget probability density (JMPD). The JMPD technique is a Bayesian method for tracking multiple targets that allows nonlinear, non-Gaussian target motions and measurement to state coupling. JMPD simultaneously estimates both the target states and the number of targets. In this paper, we give a new grid-free implementation of JMPD based on particle filtering techniques and explore several particle proposal strategies, resampling techniques, and particle diversification methods. We report the effect of these techniques on tracker performance in terms of tracks lost, mean squared error, and computational burden.
引用
收藏
页码:258 / 269
页数:12
相关论文
共 50 条
  • [1] Multitarget tracking using the joint multitarget probability density
    Kreucher, C
    Kastella, K
    Hero, AO
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2005, 41 (04) : 1396 - 1414
  • [2] Multitarget association and tracking in 3-D space based on particle filter with joint multitarget probability density
    Lee, Jinseok
    Kim, Byung Guk
    Cho, Shung Han
    Hong, Sangjn
    Cho, We-Duke
    [J]. 2007 IEEE CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, 2007, : 573 - 578
  • [3] Multitarget tracking using the Joint Multitrack Probability Density
    Garcia-Fernandez, Angel F.
    Grajal, Jesus
    [J]. FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 595 - 602
  • [4] Multiple-model Rao-Blackwellized particle probability hypothesis density filter for multitarget tracking
    Bo Li
    [J]. International Journal of Control, Automation and Systems, 2015, 13 : 426 - 433
  • [5] Multiple-model Rao-blackwellized Particle Probability Hypothesis Density Filter for Multitarget Tracking
    Li, Bo
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2015, 13 (02) : 426 - 433
  • [6] A shrinkage probability hypothesis density filter for multitarget tracking
    Tong, Huisi
    Zhang, Hao
    Meng, Huadong
    Wang, Xiqin
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011, : 1 - 13
  • [7] Probability hypothesis density filter for multitarget multisensor tracking
    Erdinc, O
    Willett, P
    Bar-Shalom, Y
    [J]. 2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 146 - 153
  • [8] Improved probability hypothesis density filter for multitarget tracking
    Li, Bo
    Pang, Fu-Wen
    [J]. NONLINEAR DYNAMICS, 2014, 76 (01) : 367 - 376
  • [9] A shrinkage probability hypothesis density filter for multitarget tracking
    Huisi Tong
    Hao Zhang
    Huadong Meng
    Xiqin Wang
    [J]. EURASIP Journal on Advances in Signal Processing, 2011
  • [10] Improved probability hypothesis density filter for multitarget tracking
    Bo Li
    Fu-Wen Pang
    [J]. Nonlinear Dynamics, 2014, 76 : 367 - 376