Predicting Temporal Activation Patterns via Recurrent Neural Networks

被引:2
|
作者
Manco, Giuseppe [1 ]
Pirro, Giuseppe [1 ]
Ritacco, Ettore [1 ]
机构
[1] ICAR, CNR, Via Pietro Bucci 8-9C, I-87036 Arcavacata Di Rende, CS, Italy
关键词
D O I
10.1007/978-3-030-01851-1_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We tackle the problem of predict whether a target user (or group of users) will be active within an event stream before a time horizon. Our solution, called PATH, leverages recurrent neural networks to learn an embedding of the past events. The embedding allows to capture influence and susceptibility between users and places closer (the representation of) users that frequently get active in different event streams within a small time interval. We conduct an experimental evaluation on real world data and compare our approach with related work.
引用
收藏
页码:347 / 356
页数:10
相关论文
共 50 条
  • [1] Neural Predicting Higher-order Patterns in Temporal Networks
    Liu, Yunyu
    Ma, Jianzhu
    Li, Pan
    [J]. PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1340 - 1351
  • [2] Predicting Substance Misuse Admission Rates via Recurrent Neural Networks
    Howard, Matthew J.
    Agrawal, Rakshit
    [J]. 2019 IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE (GHTC), 2019, : 691 - 698
  • [3] Predicting future personal life events on twitter via recurrent neural networks
    Khodabakhsh, Maryam
    Kahani, Mohsen
    Bagheri, Ebrahim
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2020, 54 (01) : 101 - 127
  • [4] Deep auscultation: Predicting respiratory anomalies and diseases via recurrent neural networks
    Perna, Diego
    Tagarelli, Andrea
    [J]. 2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 50 - 55
  • [5] Predicting future personal life events on twitter via recurrent neural networks
    Maryam Khodabakhsh
    Mohsen Kahani
    Ebrahim Bagheri
    [J]. Journal of Intelligent Information Systems, 2020, 54 : 101 - 127
  • [6] Interpreting Internal Activation Patterns in Deep Temporal Neural Networks by Finding Prototypes
    Cho, Sohee
    Chang, Wonjoon
    Lee, Ginkyeng
    Choi, Jaesik
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 158 - 166
  • [7] Predicting Human Behaviour with Recurrent Neural Networks
    Almeida, Aitor
    Azkune, Gorka
    [J]. APPLIED SCIENCES-BASEL, 2018, 8 (02):
  • [8] Temporal-Kernel Recurrent Neural Networks
    Sutskever, Ilya
    Hinton, Geoffrey
    [J]. NEURAL NETWORKS, 2010, 23 (02) : 239 - 243
  • [9] Predicting Temporal Sets with Deep Neural Networks
    Yu, Le
    Sun, Leilei
    Du, Bowen
    Liu, Chuanren
    Xiong, Hui
    Lv, Weifeng
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1083 - 1091
  • [10] Predicting reliability via neural networks
    Marseguerra, M
    Zio, E
    Ammaturo, M
    Fontana, V
    [J]. ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2003 PROCEEDINGS, 2003, : 196 - 201