Finite Volume Adaptive Mesh Refinement Based on Graph Applied to the Boundary Layer Problem

被引:1
|
作者
de Oliveira, S. L. G. [1 ]
Kischinhevsky, M. [2 ,3 ,4 ,5 ]
Burgarelli, D. [6 ,7 ]
机构
[1] Univ Fed Lavras, Lavras, MG, Brazil
[2] Univ Fed Fluminense, Dept Ciencia Comp, Niteroi, RJ, Brazil
[3] Univ Fed Fluminense, Inst Comp, Niteroi, RJ, Brazil
[4] Univ Fed Fluminense, Programa Posgrad Comp, Niteroi, RJ, Brazil
[5] Univ Fed Fluminense, Curso Bacharelado Ciencia Comp, Niteroi, RJ, Brazil
[6] Univ Fed Minas Gerais, Dept Matemat, Belo Horizonte, MG, Brazil
[7] Univ Fed Minas Gerais, Curso Bacharelado Matemat Comp, Belo Horizonte, MG, Brazil
关键词
Finite Volume Method; NACA airfoil; Boundary Layer Problem; adaptive mesh refinement; Hilbert space filling curve;
D O I
10.1109/TLA.2011.5876428
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In Physics and Fluid Mechanics, the Boundary Layer is a fluid layer in the neighborhood of a surface. This phenomena is important in many disciplines, mainly in aerodynamics. This paper presents a two-dimensional numerical simulation of this problem considering a incompressible laminar flux in steady state with non-slip condition. A adaptive mesh refinement is carried out by the Autonomous Leaves Graph (ALG) with finite volume discretizations. The Modified Hilbert Curve is implemented to traverse and provide the total ordering of the finite volumes that compose the domain. The numerical solution of the flat plate problem is compared with the Blasius Solution. Besides, flux simulations are presented around a airfoil NACA four digits. The results show evidences that the scheme is adequate in terms of performance and accuracy.
引用
收藏
页码:836 / 842
页数:7
相关论文
共 50 条
  • [1] Novel Graph-based Adaptive Triangular Mesh Refinement for Finite-volume Discretizations
    Gonzaga de Oliveira, Sanderson L.
    Kischinhevsky, Mauricio
    Tavares, Joao Manuel R. S.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 95 (02): : 119 - 141
  • [3] Autonomous Leaves Graph Applied to the Boundary Layer Problem
    Gonzaga de Oliveira, Sanderson L.
    Kischinhevsky, Mauricio
    [J]. COMPUTATIONAL SCIENCE - ICCS 2009, PART I, 2009, 5544 : 560 - 569
  • [4] Adaptive mesh refinement for finite-volume discretizations with scalene triangles
    Gonzaga de Oliveira, Sanderson L.
    Chagas, Guilherme Oliveira
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 239 - 245
  • [5] An adaptive mesh refinement strategy for finite element solution of the elliptic problem
    Aulisa, E.
    Ke, G.
    Lee, S-Y.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) : 224 - 244
  • [6] A NEW ADAPTIVE BOUNDARY MESH REFINEMENT BASED ON SIMPLE ALGORITHM
    KITA, E
    KAMIYA, N
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 1991, 18 (04) : 177 - 186
  • [7] An Improved Adaptive Mesh Refinement Method Based on Boundary Condition
    Liu, Junhong
    Xu, Li
    Yin, Junhui
    Wang, Hao
    Liu, Bingqi
    Liu, Hangxin
    Li, Bin
    [J]. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2024, : 2275 - 2276
  • [8] Adaptive Mesh Refinement for Immersed Boundary Methods
    Vanella, Marcos
    Posa, Antonio
    Balaras, Elias
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (04):
  • [9] Adaptive mesh refinement in finite element analysis
    Rajasekaran, S
    Remeshan, V
    [J]. INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 1999, 6 (03) : 135 - 143
  • [10] Texture-based volume rendering of adaptive mesh refinement data
    Ralf Kähler
    Hans-Christian Hege
    [J]. The Visual Computer, 2002, 18 : 481 - 492