On Controllability and Persistency of Excitation in Data-Driven Control: Extensions of Willems' Fundamental Lemma

被引:14
|
作者
Yu, Yue [1 ]
Talebi, Shahriar [2 ]
van Waarde, Henk J. [3 ]
Topcu, Ufuk [1 ]
Mesbahi, Mehran [2 ]
Acikmese, Behcet [2 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[3] Univ Cambridge, Dept Engn, Control Grp, Trumpington St, Cambridge CB2 1PZ, England
基金
欧洲研究理事会;
关键词
MODEL-PREDICTIVE CONTROL;
D O I
10.1109/CDC45484.2021.9682952
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Willems' fundamental lemma asserts that all trajectories of a linear time-invariant system can be obtained from a finite number of measured ones, assuming that controllability and a persistency of excitation condition hold. We show that these two conditions can be relaxed. First, we prove that the controllability condition can be replaced by a condition on the controllable subspace, unobservable subspace, and a certain subspace associated with the measured trajectories. Second, we prove that the persistency of excitation requirement can be relaxed if the degree of a certain minimal polynomial is tightly bounded. Our results show that data-driven predictive control using online data is equivalent to model predictive control, even for uncontrollable systems. Moreover, our results significantly reduce the amount of data needed in identifying homogeneous multi-agent systems.
引用
收藏
页码:6485 / 6490
页数:6
相关论文
共 50 条
  • [1] Maintaining a relevant dataset for data-driven MPC using Willems' fundamental lemma extensions
    Faye-Bedrin, Alexandre
    Aranovskiy, Stanislav
    Chauchat, Paul
    Bourdais, Romain
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2584 - 2589
  • [2] On Persistency of Excitation and Formulas for Data-driven Control
    De Persis, C.
    Tesi, P.
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 873 - 878
  • [3] On a Stochastic Fundamental Lemma and Its Use for Data-Driven Optimal Control
    Pan, Guanru
    Ou, Ruchuan
    Faulwasser, Timm
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (10) : 5922 - 5937
  • [4] Willems' Fundamental Lemma for Linear Descriptor Systems and Its Use for Data-Driven Output-Feedback MPC
    Schmitz, Philipp
    Faulwasser, Timm
    Worthmann, Karl
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2443 - 2448
  • [5] A Quantitative Notion of Persistency of Excitation and the Robust Fundamental Lemma
    Lucchese, Alessandra
    Nocini, Riccardo
    Lo Giudice, Antonino
    Asperio, Paolo
    Guglietta, Flaminia
    Carenzi, Letizia
    Bertacci, Angelica
    Donadello, Dario
    Farronato, Marco
    Maspero, Cinzia
    Zerman, Nicoletta
    [J]. NEW MICROBIOLOGICA, 2022, 45 (04): : 278 - 283
  • [6] A Quantitative Notion of Persistency of Excitation and the Robust Fundamental Lemma
    Coulson, Jeremy
    van Waarde, Henk J.
    Lygeros, John
    Dorfler, Florian
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 (1243-1248): : 1243 - 1248
  • [7] A continuous-time fundamental lemma and its application in data-driven optimal control
    Schmitz, Philipp
    Faulwasser, Timm
    Rapisarda, Paolo
    Worthmann, Karl
    [J]. Systems and Control Letters, 2024, 194
  • [8] Data-driven control via Petersen's lemma
    Bisoffi, Andrea
    De Persis, Claudio
    Tesi, Pietro
    [J]. AUTOMATICA, 2022, 145
  • [9] A "fundamental lemma" for continuous-time systems, with applications to data-driven simulation
    Rapisarda, P.
    Camlibel, M. K.
    van Waarde, H. J.
    [J]. SYSTEMS & CONTROL LETTERS, 2023, 179
  • [10] Fundamental Lemma for Data-Driven Analysis of Linear Parameter-Varying Systems
    Verhoek, Chris
    Toth, Roland
    Haesaert, Sofie
    Koch, Anne
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5040 - 5046