Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms

被引:13
|
作者
Meyer, K. A. [1 ]
Mackay, D. H. [1 ]
van Ballegooijen, A. A. [2 ]
Parnell, C. E. [1 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
[2] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
关键词
Sun: magnetic fields; Sun: magnetic carpet; FLUX EMERGENCE; FIELDS; NETWORK; INTRANETWORK; EVOLUTION; TRACKING; ELEMENTS; VELOCITY; REGIONS; MODEL;
D O I
10.1007/s11207-011-9809-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4x10(16) -aEuro parts per thousand 10(19) Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4x10(16) Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.
引用
收藏
页码:29 / 58
页数:30
相关论文
共 50 条
  • [1] Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms
    K. A. Meyer
    D. H. Mackay
    A. A. van Ballegooijen
    C. E. Parnell
    [J]. Solar Physics, 2011, 272
  • [2] Solar Magnetic Carpet III: Coronal Modelling of Synthetic Magnetograms
    K. A. Meyer
    D. H. Mackay
    A. A. van Ballegooijen
    C. E. Parnell
    [J]. Solar Physics, 2013, 286 : 357 - 384
  • [3] Solar Magnetic Carpet III: Coronal Modelling of Synthetic Magnetograms
    Meyer, K. A.
    Mackay, D. H.
    van Ballegooijen, A. A.
    Parnell, C. E.
    [J]. SOLAR PHYSICS, 2013, 286 (02) : 357 - 384
  • [4] A model of the Solar Magnetic Carpet
    C.E. Parnell
    [J]. Solar Physics, 2001, 200 : 23 - 45
  • [5] A model of the solar magnetic carpet
    Parnell, CE
    [J]. SOLAR PHYSICS, 2001, 200 (1-2) : 23 - 45
  • [6] Estimation of Spectral Solar Irradiance in the Ecliptic Plane Using Synthetic Solar Surface Magnetograms
    de Oliveira, I.
    Sowmya, K.
    Nemec, N. -E.
    Shapiro, A. I.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2024, 129 (05)
  • [7] Total solar magnetic flux: Dependence on spatial resolution of magnetograms
    Krivova, NA
    Solanki, SK
    Fligge, M
    [J]. PROCEEDINGS OF THE SOHO 11 SYMPOSIUM ON FROM SOLAR MIN TO MAX: HALF A SOLAR CYCLE WITH SOHO, 2002, 508 : 155 - 158
  • [8] Determination of magnetic diffusivity from high-resolution solar magnetograms
    Chae, Jongchul
    Litvinenko, Yuri E.
    Sakurai, Takashi
    [J]. ASTROPHYSICAL JOURNAL, 2008, 683 (02): : 1153 - 1159
  • [9] Detecting the solar new magnetic flux regions on the base of vector magnetograms
    Golovko, A. A.
    Salakhutdinova, I. I.
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2018, 179 : 120 - 127
  • [10] Nature of the magnetic carpet - I. Distribution of magnetic fluxes
    Parnell, CE
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 335 (02) : 389 - 398