Hypercomplex Quality Assessment of Multi/Hyperspectral Images

被引:259
|
作者
Garzelli, Andrea [1 ]
Nencini, Filippo [1 ]
机构
[1] Univ Siena, Dept Informat Engn, I-53100 Siena, Italy
关键词
Hypercomplex correlation coefficient (CC); hypercomplex number; image quality assessment; spectral distortion;
D O I
10.1109/LGRS.2009.2022650
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents a novel image quality index which extends the Universal Image Quality Index for monochrome images to multispectral and hyperspectral images through hypercomplex numbers. The proposed index is based on the computation of the hypercomplex correlation coefficient between the reference and tested images, which jointly measures spectral and spatial distortions. Experimental results, both from true and simulated images, are presented on spaceborne and airborne visible/infrared images. The results prove accurate measurements of inter- and intraband distortions even when anomalous pixel values are concentrated on few bands.
引用
收藏
页码:662 / 665
页数:4
相关论文
共 50 条
  • [1] A new method for quality assessment of hyperspectral images
    Garzelli, Andrea
    Nencini, Filippo
    Alparone, Luciano
    Baronti, Stefano
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 5138 - +
  • [2] MvSSIM: A quality assessment index for hyperspectral images
    Zhu, Rui
    Zhou, Fei
    Xue, Jing-Hao
    [J]. NEUROCOMPUTING, 2018, 272 : 250 - 257
  • [3] Quality Assessment of Hyperspectral Super-Resolution Images
    Xue Song
    Zhang Siyu
    Liu Yongfeng
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (04)
  • [4] Feature extraction approach for quality assessment of remotely sensed hyperspectral images
    Das, Samiran
    Bhattacharya, Shubhobrata
    Khatri, Pushkar Kumar
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02)
  • [5] Cocoa bean quality assessment using closed range hyperspectral images
    Bayona, Oswaldo
    Ochoa, Daniel
    Criollo, Ronald
    Cevallos-Cevallos, Juan
    Liao, Wenzhi
    [J]. 2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 622 - 626
  • [6] Blur-specific image quality assessment of microscopic hyperspectral images
    Quintana-Quintana, Laura
    Ortega, Samuel
    Fabelo, Himar
    Balea-Fernandez, Francisco J.
    Callico, Gustavo M.
    [J]. OPTICS EXPRESS, 2023, 31 (08) : 12261 - 12279
  • [7] Non-destructive quality assessment of hens' eggs using hyperspectral images
    Suktanarak, Sineenart
    Teerachaichayut, Sontisuk
    [J]. JOURNAL OF FOOD ENGINEERING, 2017, 215 : 97 - 103
  • [8] Cocoa bean quality assessment by using hyperspectral images and fuzzy logic techniques
    Soto, Juan
    Granda, Guillermo
    Prieto, Flavio
    Ipanaque, William
    Machacuay, Jorge
    [J]. TWELFTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2015, 9534
  • [9] Quality evaluation of Orbita hyperspectral images
    Zhang L.
    Wang S.
    Yan J.
    Zhang Q.
    Liu S.
    Ji C.
    Liu S.
    Tong Q.
    [J]. National Remote Sensing Bulletin, 2023, 27 (08) : 1925 - 1935
  • [10] QUALITY METRICS EVALUATION OF HYPERSPECTRAL IMAGES
    Singh, A. K.
    Kumar, H. V.
    Kadambi, G. R.
    Kishore, J. K.
    Shuttleworth, J.
    Manikandan, J.
    [J]. ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 1221 - 1226