Relativistic reverberation in the accretion flow of a tidal disruption event

被引:62
|
作者
Kara, Erin [1 ,2 ,3 ]
Miller, Jon M. [4 ]
Reynolds, Chris [1 ,3 ]
Dai, Lixin [3 ,5 ]
机构
[1] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[2] NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA
[4] Univ Michigan, Dept Astron, Ann Arbor, MI 48103 USA
[5] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
X-RAY REVERBERATION; ACTIVE GALACTIC NUCLEI; BROAD-LINE REGION; BLACK-HOLE MASS; RADIUS-LUMINOSITY RELATIONSHIP; K-ALPHA REVERBERATION; NARROW-LINE; XMM-NEWTON; IRON K; TIME LAGS;
D O I
10.1038/nature18007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating(1); however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe(2). Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole(3), can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet(4-8), but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation(9-12) arising from gravitationally redshifted iron Ka photons reflected off the inner accretion flow in the tidal disruption event Swift J1644+57. From the reverberation timescale, we estimate the mass of the black hole to be a few million solar masses, suggesting an accretion rate of 100 times the Eddington limit or more(13). The detection of reverberation from the relativistic depths of this rare super-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought(5,14).
引用
收藏
页码:388 / +
页数:16
相关论文
共 50 条
  • [1] Relativistic reverberation in the accretion flow of a tidal disruption event
    Erin Kara
    Jon M. Miller
    Chris Reynolds
    Lixin Dai
    Nature, 2016, 535 : 388 - 390
  • [2] Relativistic accretion disc in tidal disruption events
    Mageshwaran, T.
    Bhattacharyya, Sudip
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (02) : 1784 - 1802
  • [3] GENERAL RELATIVISTIC HYDRODYNAMIC SIMULATION OF ACCRETION FLOW FROM A STELLAR TIDAL DISRUPTION
    Shiokawa, Hotaka
    Krolik, Julian H.
    Cheng, Roseanne M.
    Piran, Tsvi
    Noble, Scott C.
    ASTROPHYSICAL JOURNAL, 2015, 804 (02):
  • [4] Radiative hydrodynamical simulations of super-Eddington accretion flow in tidal disruption event: the accretion flow and wind
    Bu, De-Fu
    Qiao, Erlin
    Yang, Xiao-Hong
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 523 (03) : 4136 - 4145
  • [5] A Candidate Relativistic Tidal Disruption Event at 340 Mpc
    Somalwar, Jean J. J.
    Ravi, Vikram
    Dong, Dillon Z. Z.
    Chen, Yuyang
    Breen, Shari
    Chandra, Poonam
    Clarke, Tracy
    De, Kishalay
    Gaensler, B. M.
    Hallinan, Gregg
    Laha, Sibasish
    Law, Casey
    Myers, Steven T. T.
    Parsotan, Tyler
    Peters, Wendy
    Polisensky, Emil
    ASTROPHYSICAL JOURNAL, 2023, 945 (02):
  • [6] REVERBERATION BY A RELATIVISTIC ACCRETION DISC
    CAMPANA, S
    STELLA, L
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1995, 272 (03) : 585 - 598
  • [7] An Extremely Luminous Outburst from a Relativistic Tidal Disruption Event
    Levan, A. J.
    NEW HORIZONS IN TIME-DOMAIN ASTRONOMY, 2012, (285): : 349 - 351
  • [8] An elliptical accretion disk following the tidal disruption event AT 2020zso
    Wevers, T.
    Nicholl, M.
    Guolo, M.
    Charalampopoulos, P.
    Gromadzki, M.
    Reynolds, T. M.
    Kankare, E.
    Leloudas, G.
    Anderson, J. P.
    Arcavi, I
    Cannizzaro, G.
    Chen, T-W
    Ihanec, N.
    Inserra, C.
    Gutierrez, C. P.
    Jonker, P. G.
    Lawrence, A.
    Magee, M. R.
    Muller-Bravo, T. E.
    Onori, F.
    Ridley, E.
    Schulze, S.
    Short, P.
    Hiramatsu, D.
    Newsome, M.
    Terwel, J. H.
    Yang, S.
    Young, D.
    ASTRONOMY & ASTROPHYSICS, 2022, 666
  • [9] Relativistic tidal disruption events
    Levana, A.
    TIDAL DISRUPTION EVENTS AND AGN OUTBURSTS, 2012, 39
  • [10] Radiative hydrodynamical simulations of super-Eddington accretion flow in tidal disruption event: the origin of optical/UV emission
    Bu, De-Fu
    Qiao, Erlin
    Yang, Xiao-Hong
    Liu, Jifeng
    Chen, Zhiwei
    Wu, Yongxin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 516 (02) : 2833 - 2839