Segmentation of SAR images using multitemporal information

被引:7
|
作者
Davidson, G [1 ]
Ouchi, K [1 ]
机构
[1] Kochi Univ Technol, Dept Environm Syst Engn, Kochi 7828502, Japan
关键词
D O I
10.1049/ip-rsn:20030751
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The maximum likelihood method of SAR segmentation has the potential to retain single pixel accuracy without requiring heuristic decisions. Normally a probabilistic measure is used to merge individual regions without assuming any prior knowledge for the underlying cross-sections. However, for a reasonable multitemporal scene there may be considerable information available from the varying cross-sections over time. An example is given where this information can be extracted by an initial classification. It is then shown how the segmentation scheme can be modified to incorporate this information via an estimate of the multitemporal underlying class distributions. Using single-look Radarsat data at 8 m resolution, it is demonstrated how the final segment population can be significantly reduced. From a comparison with ground survey data and a high-resolution AirSAR image, the structural quality of the segmentation is shown to be improved.
引用
收藏
页码:367 / 374
页数:8
相关论文
共 50 条
  • [1] Unsupervised segmentation of multitemporal interferometric SAR images
    Dammert, PBG
    Askne, JIH
    Kühlmann, S
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (05): : 2259 - 2271
  • [2] A COOPERATIVE MULTITEMPORAL SEGMENTATION METHOD FOR SAR AND OPTICAL IMAGES CHANGE DETECTION
    Wan, Ling
    Xiang, Yuming
    You, Hongjian
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1613 - 1616
  • [3] Infrastructure monitoring using SAR and multispectral multitemporal images
    Datta, U.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVI, 2020, 11533
  • [4] Multisource classification of SAR images with the use of segmentation, polarimetry, texture and multitemporal data
    Sery, F
    DucrotGambart, D
    Lopes, A
    Fjortoft, R
    CuberoCastan, E
    Marthon, P
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING III, 1996, 2955 : 186 - 197
  • [5] Monitoring Glacier Changes Using Multitemporal Multipolarization SAR Images
    Akbari, Vahid
    Doulgeris, Anthony P.
    Eltoft, Torbjorn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (06): : 3729 - 3741
  • [6] DETECTION OF LAND USE TYPE USING MULTITEMPORAL SAR IMAGES
    Yu, Qiwen
    Xing, Minfeng
    Liu, Xiaofang
    Wang, Long
    Luo, Kaiwei
    Quan, Xingwen
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1534 - 1537
  • [7] Change detection in multitemporal SAR images using MRF models
    Jiang, Liming
    Liao, Mingsheng
    Zhang, Lu
    Lin, Hui
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2006, 31 (04): : 312 - 315
  • [8] Image processing for multitemporal SAR images
    Huot, E
    Rudant, JP
    Classeau, N
    Flasque, B
    Guillope, P
    Herlin, I
    Sigelle, M
    Stroobants, W
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES, 1998, 3497 : 198 - 209
  • [9] SEGMENTATION OF SAR IMAGES USING TEXTONS
    Seixas, Francisco
    Silveira, Margarida
    Heleno, Sandra
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1600 - 1603
  • [10] Urban Areas Enhancement in Multitemporal SAR RGB Images Using Adaptive Coherence Window and Texture Information
    Amitrano, Donato
    Belfiore, Veronica
    Cecinati, Francesca
    Di Martino, Gerardo
    Iodice, Antonio
    Mathieu, Pierre-Philippe
    Medagli, Stefano
    Poreh, Davod
    Riccio, Daniele
    Ruello, Giuseppe
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (08) : 3740 - 3752