Shift-invariant spaces from rotation-covariant functions

被引:9
|
作者
Forster, Brigitte [1 ,3 ]
Blu, Thierry [2 ]
De Ville, Dimitri Van [2 ]
Unser, Michael [2 ]
机构
[1] Tech Univ Munich, Ctr Math Sci, DE-85748 Garching, Germany
[2] Swiss Fed Inst Technol, EPFL LIB, Biomed Imaging Grp, CH-1015 Lausanne, Switzerland
[3] Natl Res Ctr Environm & Hlth, IBB GSF, DE-85764 Neuherberg, Germany
关键词
complex wavelets; Riesz basis; two-scale relations; multiresolution; scaling functions; shift-invariant spaces; rotation covariance;
D O I
10.1016/j.acha.2007.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider shift-invariant multiresolution spaces generated by rotation-covariant functions rho in R-2. To construct corresponding scaling and wavelet functions, rho has to be localized with an appropriate multiplier, such that the localized version is an element of L-2(R-2). We consider several classes of multipliers and show a new method to improve regularity and decay properties of the corresponding scaling functions and wavelets. The wavelets are complex-valued functions, which are approximately rotation-covariant and therefore behave as Wirtinger differential operators. Moreover, our class of multipliers gives a novel approach for the construction of polyharmonic B-splines with better polynomial reconstruction properties. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:240 / 265
页数:26
相关论文
共 50 条
  • [1] APPROXIMATION FROM SHIFT-INVARIANT SPACES
    KYRIAZIS, GC
    [J]. CONSTRUCTIVE APPROXIMATION, 1995, 11 (02) : 141 - 164
  • [2] Sampling in shift-invariant spaces of functions with polynomial growth
    Perez-Villalon, Gerardo
    Portal, Alberto
    [J]. APPLICABLE ANALYSIS, 2013, 92 (12) : 2548 - 2558
  • [3] Invariance of shift-invariant spaces
    ZHANG QingYue & SUN WenChang Department of Mathematics and LPMC
    [J]. Science China Mathematics, 2012, 55 (07) : 1395 - 1401
  • [4] Invariance of shift-invariant spaces
    Zhang QingYue
    Sun WenChang
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1395 - 1401
  • [5] Invariance of shift-invariant spaces
    QingYue Zhang
    WenChang Sun
    [J]. Science China Mathematics, 2012, 55 : 1395 - 1401
  • [6] Shift-invariant spaces of tempered distributions and Lp-functions
    Chen, DR
    [J]. JOURNAL OF APPROXIMATION THEORY, 2003, 121 (02) : 220 - 228
  • [7] Frames for Weighted Shift-invariant Spaces
    Pilipovic, Stevan
    Simic, Suzana
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (04) : 897 - 912
  • [8] Construction of Frames for Shift-Invariant Spaces
    Pilipovic, Stevan
    Simic, Suzana
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [9] Frames by Iterations in Shift-invariant Spaces
    Aguilera, Alejandra
    Cabrelli, Carlos
    Carbajal, Diana
    Paternostro, Victoria
    [J]. 2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [10] Approximation from shift-invariant spaces by integral operators
    Lei, JJ
    Jia, RQ
    Cheney, EW
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (02) : 481 - 498