A new inversion method to calculate emission inventories without a prior at mesoscale: Application to the anthropogenic CO2 emission from Houston, Texas

被引:32
|
作者
Brioude, J. [1 ]
Petron, G. [4 ]
Frost, G. J. [1 ]
Ahmadov, R. [1 ]
Angevine, W. M. [1 ]
Hsie, E. -Y. [1 ]
Kim, S. -W. [1 ]
Lee, S. -H. [3 ,5 ]
McKeen, S. A. [1 ]
Trainer, M. [1 ]
Fehsenfeld, F. C. [1 ]
Holloway, J. S. [1 ]
Peischl, J. [1 ]
Ryerson, T. B. [1 ]
Gurney, K. R. [2 ]
机构
[1] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA
[2] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
[3] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA
[4] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA
[5] Los Alamos Natl Lab, New Mexico Consortium, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
CARBON-DIOXIDE; FLUXES; NO2;
D O I
10.1029/2011JD016918
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We developed a new inversion method to calculate an emission inventory for an anthropogenic pollutant without a prior emission estimate at mesoscale. This method employs slopes between mixing ratio enhancements of a given pollutant (CO2, for instance) with other co-emitted tracers in conjunction with the emission inventories of those tracers (CO, NOy, and SO2 are used in this example). The current application of this method employed in situ measurements onboard the NOAA WP-3 research aircraft during the 2006 Texas Air Quality Study (TexAQS 2006). We used 3 different transport models to estimate the uncertainties introduced by the transport models in the inversion. We demonstrated the validity of the new inversion method by calculating a 4 x 4 km(2) emission inventory of anthropogenic CO2 in the Houston area in Texas, and comparing it to the 10 x 10 km(2) Vulcan emission inventory for the same region. The calculated anthropogenic CO2 inventory for the Houston Ship Channel, home to numerous major industrial and port emission sources, showed excellent agreement with Vulcan. The daytime CO2 average flux from the Ship Channel is the largest urban CO2 flux reported in the literature. Compared to Vulcan, the daytime urban area CO2 emissions were higher by 37% +/- 6%. Those differences can be explained by uncertainties in emission factors in Vulcan and by increased emissions from point sources and on-road emitters between 2002, the reference year in Vulcan, and 2006, the year that the TexAQS observations were made.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Retrieval anthropogenic CO2 emissions from OCO-2 and comparison with gridded emission inventories
    Jin, Chunlin
    Xue, Yong
    Yuan, Tao
    Zhao, Liang
    Jiang, Xingxing
    Sun, Yuxin
    Wu, Shuhui
    Wang, Xiangkai
    [J]. JOURNAL OF CLEANER PRODUCTION, 2024, 448
  • [2] Simulation of Anthropogenic CO2 Emissions in the Yangtze River Delta Based on Different Emission Inventories
    Ma, Xin-Yi
    Huang, Wen-Jing
    Hu, Ning
    Xiao, Wei
    Hu, Cheng
    Zhang, Mi
    Cao, Chang
    Zhao, Jia-Yu
    [J]. Huanjing Kexue/Environmental Science, 2023, 44 (04): : 2009 - 2021
  • [3] Evaluating Anthropogenic CO2 Bottom-Up Emission Inventories Using Satellite Observations from GOSAT and OCO-2
    Zhang, Shaoqing
    Lei, Liping
    Sheng, Mengya
    Song, Hao
    Li, Luman
    Guo, Kaiyuan
    Ma, Caihong
    Liu, Liangyun
    Zeng, Zhaocheng
    [J]. REMOTE SENSING, 2022, 14 (19)
  • [4] Assimilation of atmospheric CO2 observations from space can support national CO2 emission inventories
    Kaminski, Thomas
    Scholze, Marko
    Rayner, Peter
    Vossbeck, Michael
    Buchwitz, Michael
    Reuter, Maximilian
    Knorr, Wolfgang
    Chen, Hans
    Agusti-Panareda, Anna
    Loscher, Armin
    Meijer, Yasjka
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (01)
  • [5] New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors
    Shan, Yuli
    Liu, Jianghua
    Liu, Zhu
    Xu, Xinwanghao
    Shao, Shuai
    Wang, Peng
    Guan, Dabo
    [J]. APPLIED ENERGY, 2016, 184 : 742 - 750
  • [6] Estimates of CO2 Anthropogenic Emission from the Megacity St. Petersburg
    Y. M. Timofeyev
    G. M. Nerobelov
    Y. A. Virolainen
    A. V. Poberovskii
    S. C. Foka
    [J]. Doklady Earth Sciences, 2020, 494 : 753 - 756
  • [7] CO2 emissions from C40 cities: citywide emission inventories and comparisons with global gridded emission datasets
    Ahn, D. Y.
    Goldberg, D. L.
    Coombes, Toby
    Kleiman, Gary
    Anenberg, S. C.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2023, 18 (03)
  • [8] Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species
    Nassar, R.
    Jones, D. B. A.
    Suntharalingam, P.
    Chen, J. M.
    Andres, R. J.
    Wecht, K. J.
    Yantosca, R. M.
    Kulawik, S. S.
    Bowman, K. W.
    Worden, J. R.
    Machida, T.
    Matsueda, H.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2010, 3 (02) : 689 - 716
  • [9] A thermodynamic method to calculate energy & exergy consumption and CO2 emission of building materials based on economic indicator
    Huahui Xie
    Guangcai Gong
    Mushu Fu
    Ping Wang
    Long Li
    [J]. Building Simulation, 2018, 11 : 235 - 244
  • [10] A thermodynamic method to calculate energy & exergy consumption and CO2 emission of building materials based on economic indicator
    Xie, Huahui
    Gong, Guangcai
    Fu, Mushu
    Wang, Ping
    Li, Long
    [J]. BUILDING SIMULATION, 2018, 11 (02) : 235 - 244