Resilient back propagation learning algorithm for recurrent fuzzy neural networks

被引:17
|
作者
Mastorocostas, PA [1 ]
机构
[1] Technol & Educ Inst Serres, Dept Informat & Commun, Serres 62124, Greece
关键词
D O I
10.1049/el:20040052
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An efficient training method for recurrent fuzzy neural networks is proposed. The method modifies the RPROP algorithm, originally developed for static neural networks, in order to be applied to dynamic systems. A comparative analysis with the standard back propagation through time is given, indicating the effectiveness of the proposed algorithm.
引用
收藏
页码:57 / 58
页数:2
相关论文
共 50 条