A unified efficient implementation of trust-region type algorithms for unconstrained optimization

被引:1
|
作者
Dussault, Jean-Pierre [1 ]
机构
[1] Univ Sherbrooke, Dept Informat, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Nonlinear optimization; unconstrained optimization; trust-region algorithms; adaptive cubic regularization methods; Julia programming language;
D O I
10.1080/03155986.2019.1624490
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adaptive cubic regularization (ARC) and trust-region (TR) methods use modified linear systems to compute their steps. The modified systems consist in adding some multiple of the identity matrix (or a well-chosen positive definite matrix) to the Hessian to obtain a sufficiently positive definite linear system, the so called shifted system. This type of system was first proposed by Levenberg and Marquardt. Some trial and error is often involved to obtain a specified value for this shift parameter. We provide an efficient unified implementation to track the shift parameter; our implementation encompasses many ARC and TR variants.
引用
收藏
页码:290 / 309
页数:20
相关论文
共 50 条
  • [1] Adaptive trust-region algorithms for unconstrained optimization
    Rezapour, Mostafa
    Asaki, Thomas J.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2021, 36 (05): : 1059 - 1081
  • [2] An efficient nonmonotone trust-region method for unconstrained optimization
    Masoud Ahookhosh
    Keyvan Amini
    [J]. Numerical Algorithms, 2012, 59 : 523 - 540
  • [3] An efficient nonmonotone trust-region method for unconstrained optimization
    Ahookhosh, Masoud
    Amini, Keyvan
    [J]. NUMERICAL ALGORITHMS, 2012, 59 (04) : 523 - 540
  • [4] A hybrid of adjustable trust-region and nonmonotone algorithms for unconstrained optimization
    Amini, Keyvan
    Ahookhosh, Masoud
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (9-10) : 2601 - 2612
  • [5] A retrospective trust-region method for unconstrained optimization
    Fabian Bastin
    Vincent Malmedy
    Mélodie Mouffe
    Philippe L. Toint
    Dimitri Tomanos
    [J]. Mathematical Programming, 2010, 123 : 395 - 418
  • [6] A retrospective trust-region method for unconstrained optimization
    Bastin, Fabian
    Malmedy, Vincent
    Mouffe, Melodie
    Toint, Philippe L.
    Tomanos, Dimitri
    [J]. MATHEMATICAL PROGRAMMING, 2010, 123 (02) : 395 - 418
  • [7] A variant of trust-region methods for unconstrained optimization
    Wang, Fusheng
    Zhang, Kecun
    Wang, Chuanlong
    Wang, Li
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) : 297 - 307
  • [8] A trust-region method with a conic model for unconstrained optimization
    Qu, Shao-Jian
    Jiang, Su-Da
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (15) : 1780 - 1808
  • [9] An adaptive conic trust-region method for unconstrained optimization
    Han, QM
    Sun, WY
    Han, JY
    Sampaio, RJB
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (06): : 665 - 677
  • [10] An Improved Adaptive Trust-Region Method for Unconstrained Optimization
    Esmaeili, Hamid
    Kimiaei, Morteza
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (04) : 469 - 490