On Z2-Thurston norms and pseudo-horizontal surfaces in orientable Seifert 3-manifolds

被引:0
|
作者
Du, Xiaoming [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
关键词
Seifert manifold; Geometric incompressible surface; Pseudo-horizontal surface; Z(2)-Thurston norm; Minimal genus; NONORIENTABLE SURFACES;
D O I
10.1016/j.topol.2022.108060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a general method to compute the Z(2)-Thurston norm for every Z(2) homology class in an orientable Seifert manifold with orientable orbit surface. Our main tools are pseudo-horizontal surfaces. We give a necessary and sufficient criterion for the existence of pseudo-horizontal surfaces, calculate the non-orientable genera for such surfaces, and detect their Z(2)-homology classes. We then describe an algorithm to calculate the Z(2)-Thurston norm of each Z(2)-homology classes. We also present several interesting examples. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 41 条
  • [1] Z2-Thurston norm and complexity of 3-manifolds
    Jaco, William
    Rubinstein, J. Hyam
    Tillmann, Stephan
    MATHEMATISCHE ANNALEN, 2013, 356 (01) : 1 - 22
  • [2] Z2-Thurston norm and complexity of 3-manifolds, II
    Jaco, William
    Rubinstein, J. Hyam
    Spreer, Jonathan
    Tillmann, Stephan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (01): : 503 - 529
  • [3] HEEGAARD GENUS OF CLOSED ORIENTABLE SEIFERT 3-MANIFOLDS
    BOILEAU, M
    ZIESCHANG, H
    INVENTIONES MATHEMATICAE, 1984, 76 (03) : 455 - 468
  • [4] Alexander and Thurston norms of fibered 3-manifolds
    Dunfield, NM
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 200 (01) : 43 - 58
  • [5] NON-ORIENTABLE SURFACES IN ORIENTABLE 3-MANIFOLDS
    BREDON, GE
    WOOD, JW
    INVENTIONES MATHEMATICAE, 1969, 7 (02) : 83 - &
  • [6] The Dijkgraaf-Witten invariants of Seifert 3-manifolds with orientable bases
    Chen, Haimiao
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 108 : 38 - 48
  • [7] Finding Non-orientable Surfaces in 3-Manifolds
    Burton, Benjamin A.
    de Mesmay, Arnaud
    Wagner, Uli
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (04) : 871 - 888
  • [8] Finding Non-orientable Surfaces in 3-Manifolds
    Benjamin A. Burton
    Arnaud de Mesmay
    Uli Wagner
    Discrete & Computational Geometry, 2017, 58 : 871 - 888
  • [9] On the Heegaard genus and tri-genus of non-orientable Seifert 3-manifolds
    Núñez, V
    TOPOLOGY AND ITS APPLICATIONS, 1999, 98 (1-3) : 241 - 267
  • [10] Cobordism of immersions of surfaces in non-orientable 3-manifolds
    Gini, R
    MANUSCRIPTA MATHEMATICA, 2001, 104 (01) : 49 - 69