Ricci curvature and quantum geometry

被引:1
|
作者
Carfora, Mauro [1 ,2 ]
Familiari, Francesca [1 ,3 ]
机构
[1] Univ Pavia, Dept Phys, Via Bassi 6, I-27100 Pavia, Italy
[2] INFN, Italian Natl Grp Math Phys GNFM, Pavia Sect, Pavia, Italy
[3] INFN, Pavia Sect, Pavia, Italy
关键词
Riemannian geometry and physics; renormalization group; geometric flows; METRIC-MEASURE-SPACES; POLAR FACTORIZATION; 3-MANIFOLDS; MANIFOLDS; MODELS;
D O I
10.1142/S0219887820500498
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a few elementary aspects of the circle of ideas associated with a quantum field theory (QFT) approach to Riemannian Geometry, a theme related to how Riemannian structures are generated out of the spectrum of (random or quantum) fluctuations around a background fiducial geometry. In such a scenario, Ricci curvature with its subtle connections to diffusion, optimal transport, Wasserestein geometry and renormalization group, features prominently.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Geometry of Ricci Curvature
    Naber, Aaron
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 911 - 937
  • [2] The Ricci curvature in noncommutative geometry
    Floricel, Remus
    Ghorbanpour, Asghar
    Khalkhali, Masoud
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (01) : 269 - 296
  • [3] RICCI CURVATURE AND CONFORMAL GEOMETRY
    BUZZANCA, C
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 147 : 1 - 19
  • [4] Ricci curvature in Kahler geometry
    Sun, Song
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (09)
  • [5] ON THE RICCI CURVATURE TENSOR IN FINSLER GEOMETRY
    Shen, Zhongmin
    [J]. SYMMETRY-CULTURE AND SCIENCE, 2012, 23 (02): : 125 - 131
  • [6] Implementing quantum Ricci curvature
    Klitgaard, N.
    Loll, R.
    [J]. PHYSICAL REVIEW D, 2018, 97 (10)
  • [7] Introducing quantum Ricci curvature
    Klitgaard, N.
    Loll, R.
    [J]. PHYSICAL REVIEW D, 2018, 97 (04)
  • [8] On Some Ricci Curvature Tensors in Finsler Geometry
    Sevim, Esra Sengelen
    Shen, Zhongmin
    Ulgen, Semail
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [9] On Some Ricci Curvature Tensors in Finsler Geometry
    Esra Sengelen Sevim
    Zhongmin Shen
    Semail Ulgen
    [J]. Mediterranean Journal of Mathematics, 2023, 20
  • [10] Optimal transport and Ricci curvature in Finsler geometry
    Ohta, Shin-ichi
    [J]. PROBABILISTIC APPROACH TO GEOMETRY, 2010, 57 : 323 - 342