BIGFile: Bayesian Information Gain for Fast File Retrieval

被引:18
|
作者
Liu, Wanyu [1 ,2 ]
Rioul, Olivier [1 ]
Mcgrenere, Joanna [2 ,3 ]
Mackay, Wendy E. [2 ]
Beaudouin-Lafon, Michel [2 ]
机构
[1] Univ Paris Saclay, Telecom ParisTech, LTCI, F-75013 Paris, France
[2] Univ Paris Saclay, INRIA, CNRS, LRI,Univ Paris Sud, F-91400 Orsay, France
[3] Univ British Columbia, Dept Comp Sci, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
Navigation-based file retrieval; Split adaptive interfaces; Bayesian approach; Mutual information;
D O I
10.1145/3173574.3173959
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce BIGFile, a new fast file retrieval technique based on the Bayesian Information Gain framework. BIGFile provides interface shortcuts to assist the user in navigating to a desired target (file or folder). BIGFile's split interface combines a traditional list view with an adaptive area that displays shortcuts to the set of file paths estimated by our computationally efficient algorithm. Users can navigate the list as usual, or select any part of the paths in the adaptive area. A pilot study of 15 users informed the design of BIGFile, revealing the size and structure of their file systems and their file retrieval practices. Our simulations show that BIGFile outperforms Fitchett et al.'s AccessRank, a best-of-breed prediction algorithm. We conducted an experiment to compare BIGFile with ARFile (AccessRank instantiated in a split interface) and with a Finder-like list view as baseline. BIGFile was by far the most efficient technique (up to 44% faster than ARFile and 64% faster than Finder), and participants unanimously preferred the split interfaces to the Finder.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] An inverted file cache for fast information retrieval
    Shieh, WY
    Shann, JJJ
    Chung, CP
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2003, 19 (04) : 681 - 695
  • [2] An extended inverted file approach for information retrieval
    Ounis, I
    Pasca, M
    [J]. IDEAS '97 - INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM, PROCEEDINGS, 1997, : 397 - 402
  • [3] Posting file partitioning and parallel information retrieval
    Ma, YC
    Chen, TF
    Chung, CP
    [J]. JOURNAL OF SYSTEMS AND SOFTWARE, 2002, 63 (02) : 113 - 127
  • [4] INVERTED FILE PROCESSOR FOR INFORMATION-RETRIEVAL
    STELLHORN, WH
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1977, 26 (12) : 1258 - 1267
  • [5] FILE-IT - AN INFORMATION FILING AND RETRIEVAL PROGRAM
    DUTTON, F
    [J]. INTERFACE AGE, 1984, 9 (03): : 98 - &
  • [6] Frequentist and Bayesian approach to information retrieval
    Amati, Giambattista
    [J]. ADVANCES IN INFORMATION RETRIEVAL, 2006, 3936 : 13 - 24
  • [7] Information retrieval using Bayesian networks
    Neuman, L
    Kozlowski, J
    Zgrzywa, A
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PT 3, PROCEEDINGS, 2004, 3038 : 521 - 528
  • [8] Bayesian inference for the information gain model
    Stringer, Sven
    Borsboom, Denny
    Wagenmakers, Eric-Jan
    [J]. BEHAVIOR RESEARCH METHODS, 2011, 43 (02) : 297 - 309
  • [9] Bayesian inference for the information gain model
    Sven Stringer
    Denny Borsboom
    Eric-Jan Wagenmakers
    [J]. Behavior Research Methods, 2011, 43 : 297 - 309
  • [10] Automatic Generating Vocabulary File in Myanmar Information Retrieval
    Nay, Lin
    Naing, SoeYan
    Kudinov, Vitaly A.
    [J]. PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2019, : 266 - 270