STABLE TRANSITIVITY FOR EXTENSIONS OF HYPERBOLIC SYSTEMS BY SEMIDIRECT PRODUCTS OF COMPACT AND NILPOTENT LIE GROUPS

被引:3
|
作者
Nitica, Viorel [1 ,2 ]
机构
[1] W Chester Univ, Dept Math, W Chester, PA 19383 USA
[2] Inst Math, Bucharest, Romania
关键词
Topological transitivity; Hyperbolic set; Extension; Semidirect product; Nilpotent Lie group; NONCOMPACT EXTENSIONS; DIFFEOMORPHISMS; SUBGROUPS; UNION;
D O I
10.3934/dcds.2011.29.1197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume that X is a hyperbolic basic set for f : X -> X. We show new examples of Lie group fibers G for which, in the class of C(r), r > 0; G-extensions of f, those that are transitive are open and dense. The fibers are semidirect products of compact and nilpotent groups.
引用
收藏
页码:1197 / 1204
页数:8
相关论文
共 50 条
  • [1] Stable transitivity of Heisenberg group extensions of hyperbolic systems
    Nitica, Viorel
    Toeroek, Andrei
    [J]. NONLINEARITY, 2014, 27 (04) : 661 - 683
  • [2] Stable Transitivity of Certain Noncompact Extensions of Hyperbolic Systems
    Ian Melbourne
    Viorel Niţică
    Andrei Török
    [J]. Annales Henri Poincaré, 2005, 6 : 725 - 746
  • [3] Stable transitivity of certain noncompact extensions of hyperbolic systems
    Melbourne, I
    Nitica, V
    Török, A
    [J]. ANNALES HENRI POINCARE, 2005, 6 (04): : 725 - 746
  • [4] Weyl-Pedersen calculus for some semidirect products of nilpotent Lie groups
    Beltita, Ingrid
    Beltita, Daniel
    Pascu, Mihai
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 40 : 278 - 289
  • [5] A note about stable transitivity of noncompact extensions of hyperbolic systems
    Melbourne, I
    Nitica, V
    Török, A
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 14 (02) : 355 - 363
  • [6] TRANSITIVITY OF FAMILIES OF INVARIANT VECTOR-FIELDS ON THE SEMIDIRECT PRODUCTS OF LIE-GROUPS
    BONNARD, B
    JURDJEVIC, V
    KUPKA, I
    SALLET, G
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 271 (02) : 525 - 535
  • [7] COMPACT EXTENSIONS OF COMPACTLY GENERATED NILPOTENT GROUPS ARE PRO-LIE
    HOFMANN, KH
    LIUKKONEN, JR
    MISLOVE, MW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 84 (03) : 443 - 448
  • [8] Stable ergodicity of skew extensions by compact Lie groups
    Field, M
    Parry, W
    [J]. TOPOLOGY, 1999, 38 (01) : 167 - 187
  • [9] Nilpotent Lie groups and hyperbolic automorphisms
    Manoj Choudhuri
    C. R. E. Raja
    [J]. Archiv der Mathematik, 2020, 115 : 247 - 255
  • [10] Nilpotent Lie groups and hyperbolic automorphisms
    Choudhuri, Manoj
    Raja, C. R. E.
    [J]. ARCHIV DER MATHEMATIK, 2020, 115 (03) : 247 - 255