Upper semicontinuity of attractors for small perturbations of Klein-Gordon-Schrodinger lattice system

被引:6
|
作者
Li, Hengyan [1 ]
Sun, Lei [1 ,2 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454150, Peoples R China
关键词
random attractor; stochastic Klein-Gordon-Schrodinger system; upper semicontinuity; DYNAMICAL-SYSTEMS; ASYMPTOTIC-BEHAVIOR; INFINITE LATTICES; UNBOUNDED-DOMAINS; EQUATIONS;
D O I
10.1186/1687-1847-2014-300
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the existence of the random attractor for a Klein-Gordon-Schodinger system under a small epsilon-random perturbation on a high dimensional infinite lattice. Firstly, we prove the asymptotic compactness of the random dynamical system and obtain the random attractor. Then, by comparing to the case without random perturbation (epsilon = 0), we show the upper semicontinuity of the attractors.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Upper semicontinuity of attractors for the Klein-Gordon-Schrodinger equation
    Lu, KN
    Wang, BX
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (01): : 157 - 168
  • [2] Upper semicontinuity of attractors for small perturbations of Klein-Gordon-Schrödinger lattice system
    Hengyan Li
    Lei Sun
    [J]. Advances in Difference Equations, 2014
  • [3] Attractors for the Klein-Gordon-Schrodinger equation
    Wang, B
    Lange, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2445 - 2457
  • [4] Random attractors for the stochastic damped Klein-Gordon-Schrodinger system
    Zhao, Xin
    Li, Yin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [5] Global attractor for Klein-Gordon-Schrodinger lattice system
    尹福其
    周盛凡
    殷苌茗
    肖翠辉
    [J]. Applied Mathematics and Mechanics(English Edition), 2007, (05) : 695 - 706
  • [6] Global attractor for Klein-Gordon-Schrodinger lattice system
    Yin, Fu-qi
    Zhou, Sheng-fan
    Yin, Chang-ming
    Xiao, Cui-hui
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (05) : 695 - 706
  • [7] ATTRACTORS OF THE KLEIN-GORDON-SCHRODINGER LATTICE SYSTEMS WITH ALMOST PERIODIC NONLINEAR PART
    Abdallah, Ahmed Y.
    Al-Khader, Taqwa M.
    Abu-Shaab, Heba N.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6481 - 6500
  • [8] Uniform attractors for non-autonomous Klein-Gordon-Schrodinger lattice systems
    Huang, Jin-wu
    Han, Xiao-ying
    Zhou, Sheng-fan
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (12) : 1597 - 1607
  • [9] On Klein-Gordon-Schrodinger Control System
    Wang, Quan-Fang
    [J]. 2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2253 - 2257
  • [10] Global attractors for the discrete Klein-Gordon-Schrodinger type equations
    Li, Chunqiu
    Hsu, Cheng Hsiung
    Lin, Jian Jhong
    Zhao, Caidi
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (10) : 1404 - 1426