Effect of Reduced Spatial Resolution on Mineral Mapping Using Imaging Spectrometry-Examples Using Hyperspectral Infrared Imager (HyspIRI)-Simulated Data

被引:28
|
作者
Kruse, Fred A. [1 ,2 ,3 ,4 ]
Taranik, James V. [3 ,4 ]
Coolbaugh, Mark [3 ,4 ,5 ]
Michaels, Joshua [3 ,4 ]
Littlefield, Elizabeth F. [3 ,4 ]
Calvin, Wendy M. [3 ,4 ]
Martini, Brigette A. [6 ]
机构
[1] USN, Postgrad Sch, Dept Phys, Monterey, CA 93943 USA
[2] USN, Postgrad Sch, Ctr Remote Sensing, Monterey, CA 93943 USA
[3] Univ Nevada, Dept Geol Sci & Engn, Reno, NV 89557 USA
[4] Univ Nevada, Arthur Brant Lab Explorat Geophys, Reno, NV 89557 USA
[5] Renaissance Gold Inc, Reno, NV 89502 USA
[6] Ormat Nevada Inc, Reno, NV 89557 USA
关键词
imaging spectrometry; hyperspectral; HSI; mineral mapping; HyspIRI simulation; spatial resolution modeling; STEAMBOAT-SPRINGS; VEGETATION; DISTRICT; NEVADA; ROCKS;
D O I
10.3390/rs3081584
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Hyperspectral Infrared Imager (HyspIRI) is a proposed NASA satellite remote sensing system combining a visible to shortwave infrared (VSWIR) imaging spectrometer with over 200 spectral bands between 0.38 and 2.5 mu m and an 8-band thermal infrared (TIR) multispectral imager, both at 60 m spatial resolution. Short Wave Infrared (SWIR) (2.0-2.5 mu m) simulation results are described here using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data in preparation for the future launch. The simulated data were used to assess the effect of the HyspIRI 60 m spatial resolution on the ability to identify and map minerals at hydrothermally altered and geothermal areas. Mineral maps produced using these data successfully detected and mapped a wide variety of characteristic minerals, including jarosite, alunite, kaolinite, dickite, muscovite-illite, montmorillonite, pyrophyllite, calcite, buddingtonite, and hydrothermal silica. Confusion matrix analysis of the datasets showed overall classification accuracy ranging from 70 to 92% for the 60 m HyspIRI simulated data relative to 15 m spatial resolution data. Classification accuracy was lower for similar minerals and smaller areas, which were not mapped well by the simulated 60 m HyspIRI data due to blending of similar signatures and spectral mixing with adjacent pixels. The simulations demonstrate that HyspIRI SWIR data, while somewhat limited by their relatively coarse spatial resolution, should still be useful for mapping hydrothermal/geothermal systems, and for many other geologic applications requiring mineral mapping.
引用
收藏
页码:1584 / 1602
页数:19
相关论文
共 14 条
  • [1] Effect of reduced spatial resolution on mineral mapping using imaging spectrometry-examples using hyperspectral infrared imager (HyspIRI)-simulated data
    Physics Department and Remote Sensing Center, Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943, United States
    不详
    不详
    不详
    Remote Sens., 8 (1584-1602):
  • [2] Potential of Resolution-Enhanced Hyperspectral Data for Mineral Mapping Using Simulated EnMAP and Sentinel-2 Images
    Yokoya, Naoto
    Chan, Jonathan Cheung-Wai
    Segl, Karl
    REMOTE SENSING, 2016, 8 (03)
  • [3] Leveraging High-Resolution Long-Wave Infrared Hyperspectral Laboratory Imaging Data for Mineral Identification Using Machine Learning Methods
    Hamedianfar, Alireza
    Laakso, Kati
    Middleton, Maarit
    Tormanen, Tuomo
    Koykka, Juha
    Torppa, Johanna
    REMOTE SENSING, 2023, 15 (19)
  • [4] Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data
    Onojeghuo, Alex Okiemute
    Onojeghuo, Ajoke Ruth
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 59 : 79 - 91
  • [5] A Machine Learning Framework for Drill-Core Mineral Mapping Using Hyperspectral and High-Resolution Mineralogical Data Fusion
    Acosta, Isabel Cecilia Contreras
    Khodadadzadeh, Mahdi
    Tusa, Laura
    Ghamisi, Pedram
    Gloaguen, Richard
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 4829 - 4842
  • [6] Effect of spatial resolution and data splitting on landslide susceptibility mapping using different machine learning algorithms
    Abraham, Minu Treesa
    Satyam, Neelima
    Jain, Prashita
    Pradhan, Biswajeet
    Alamri, Abdullah
    GEOMATICS NATURAL HAZARDS & RISK, 2021, 12 (01) : 3381 - 3408
  • [7] Using Spatial Structure Analysis of Hyperspectral Imaging Data and Fourier Transformed Infrared Analysis to Determine Bioactivity of Surface Pesticide Treatment
    Nansen, Christian
    Abidi, Noureddine
    Sidumo, Amelia Jorge
    Gharalari, Ali Hosseini
    REMOTE SENSING, 2010, 2 (04) : 908 - 925
  • [8] Improved spatial resolution of infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging using a reflective objective
    Joignant, Alena N.
    Bai, Hongxia
    Manni, Jeffrey G., Sr.
    Muddiman, David C.
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2022, 36 (23)
  • [9] Mapping irrigated and rainfed wheat areas using high spatial-temporal resolution data generated by Moderate Resolution Imaging Spectroradiometer and Landsat
    Zhang, Lingling
    Feng, Hao
    Dong, Qin'ge
    Jin, Ning
    Zhang, Tinglong
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (04):
  • [10] Automated annotation and visualisation of high-resolution spatial proteomic mass spectrometry imaging data using HIT-MAP
    G. Guo
    M. Papanicolaou
    N. J. Demarais
    Z. Wang
    K. L. Schey
    P. Timpson
    T. R. Cox
    A. C. Grey
    Nature Communications, 12