Existence of positive solutions for a class of quasilinear Schrodinger equations with local superlinear nonlinearities

被引:5
|
作者
Liang, Zhanping [1 ]
Gao, Jinfeng [1 ]
Li, Anran [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger equations; Variational methods; Local assumptions; Monotonicity trick; L-infinity-estimates; SOLITON-SOLUTIONS;
D O I
10.1016/j.jmaa.2019.123732
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the following class of quasilinear Schrodinger equations -Delta u + V(x)u + kappa/2 [Delta(u(2))]u = lambda l(u), x is an element of R-N, where N >= 3, lambda > 0, and kappa is an element of R \ {0}. With some appropriate assumptions on the potential V and local assumptions on the nonlinear term l, we determine that positive solutions to the above equation exist by using the ingenious monotonicity trick developed by Jeanjean and minimax techniques with careful L-infinity-estimates. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条