An eigenvalue problem related to the non-linear σ-model:: analytical and numerical results

被引:5
|
作者
Fateev, VA
Onofri, E
机构
[1] Univ Montpellier 2, Phys Math Lab, F-34095 Montpellier, France
[2] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[3] Univ Parma, Dipartimento Fis, Ist Nazl Fis Nucl, Grp Coll Parma, I-43100 Parma, Italy
来源
关键词
D O I
10.1088/0305-4470/36/47/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An eigenvalue problem relevant for the non-linear sigma model with singular metric is considered. We prove the existence of a non-degenerate pure point spectrum for all finite values of the size R of the system. In the infrared (IR) regime (large R) the eigenvalues admit a power series expansion around the IR critical point R --> infinity. We compute high order coefficients and prove that the series converges for all finite values of R. In the ultraviolet (UV) limit the spectrum condenses into a continuum spectrum with a set of residual bound states. The spectrum agrees nicely with the central charge computed by the thermodynamic Bethe ansatz method.
引用
收藏
页码:11881 / 11899
页数:19
相关论文
共 50 条