Numerical approximation of critical points of the Ginzburg-Landau functional

被引:2
|
作者
Neuberger, JW [1 ]
Renka, RJ
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
[2] Univ N Texas, Dept Comp Sci, Denton, TX 76203 USA
关键词
Ginzburg-Landau functionals;
D O I
10.1016/S0362-546X(01)00443-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a method for approximating critical points of the Ginzburg-Landau functional. Several numerical methods for implementing the basic algorithm are compared for efficiency on a simple test problem. We also present test results describing a sequence of critical points associated with increasing values of the external magnetic field.
引用
收藏
页码:3259 / 3270
页数:12
相关论文
共 50 条
  • [1] Critical points of the Ginzburg-Landau functional on multiply-connected domains
    Neuberger, JW
    Renka, RJ
    EXPERIMENTAL MATHEMATICS, 2000, 9 (04) : 523 - 533
  • [2] Critical points of the Ginzburg-Landau system on a Riemannian surface
    Baraket, S
    ASYMPTOTIC ANALYSIS, 1996, 13 (03) : 277 - 317
  • [3] L(INFINITY)-APPROXIMATION FOR MINIMIZERS OF THE GINZBURG-LANDAU FUNCTIONAL
    SHAFRIR, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (06): : 705 - 710
  • [4] CRITICAL-POINTS OF THE GINZBURG-LANDAU SYSTEM ON A RIEMANNIAN SURFACE
    BARAKET, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (09): : 949 - 952
  • [5] Homogenization of a Ginzburg-Landau functional
    Berlyand, L
    Cioranescu, D
    Golovaty, D
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (01) : 87 - 92
  • [6] SOLUTIONS OF GINZBURG-LANDAU EQUATIONS AND CRITICAL-POINTS OF THE RENORMALIZED ENERGY
    LIN, FH
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (05): : 599 - 622
  • [7] Numerical study of a Lyapunov functional for the complex Ginzburg-Landau equation
    Montagne, R
    HernandezGarcia, E
    SanMiguel, M
    PHYSICA D-NONLINEAR PHENOMENA, 1996, 96 (1-4) : 47 - 65
  • [8] Singularities and a Simple Ginzburg-Landau Functional
    Neuberger, J. W.
    SOBOLEV GRADIENTS AND DIFFERENTIAL EQUATIONS, SECOND EDITION, 2010, 1670 : 109 - 111
  • [9] Covariant gaussian approximation in Ginzburg-Landau model
    Wang, J. F.
    Li, D. P.
    Kao, H. C.
    Rosenstein, B.
    ANNALS OF PHYSICS, 2017, 380 : 228 - 254
  • [10] MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL WITH WEIGHT
    ANDRE, N
    SHAFRIR, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (08): : 999 - 1004