Compressive Sampling With Generalized Polygons

被引:19
|
作者
Gao, Kanke [1 ]
Batalama, Stella N. [1 ]
Pados, Dimitris A. [1 ]
Suter, Bruce W. [2 ]
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[2] USAF, Res Lab, RITB, Rome, NY 13441 USA
关键词
Belief propagation; bipartite graphs; compressed sensing; compressive sampling; finite geometry; generalized polygons; low-density parity-check codes; Nyquist sampling; sparse signals; SIGNAL RECOVERY;
D O I
10.1109/TSP.2011.2160860
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of compressed sensing and propose new deterministic low-storage constructions of compressive sampling matrices based on classical finite-geometry generalized polygons. For the noiseless measurements case, we develop a novel exact-recovery algorithm for strictly sparse signals that utilizes the geometry properties of generalized polygons and exhibits complexity that depends on the sparsity value only. In the presence of measurement noise, recovery of the generalized-polygon sampled signals can be carried out effectively using a belief propagation algorithm. Experimental studies included in this paper illustrate our theoretical developments.
引用
收藏
页码:4759 / 4766
页数:8
相关论文
共 50 条
  • [1] GENERALIZED ATMOSPHERIC SAMPLING OF KNOTTED POLYGONS
    Janse Van Rensburg, E. J.
    Rechnitzer, A.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (08) : 1145 - 1171
  • [2] SAMPLING RANDOM POLYGONS
    GEORGE, EI
    JOURNAL OF APPLIED PROBABILITY, 1987, 24 (03) : 557 - 573
  • [3] GENERALIZED POLYGONS WITH VALUATION
    VANMALDEGHEM, H
    ARCHIV DER MATHEMATIK, 1989, 53 (05) : 513 - 520
  • [4] Compressive Kriging Using Multi-Dimensional Generalized Nested Sampling
    Qiao, Heng
    Hucumenoglu, Mehmet Can
    Pal, Piya
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 84 - 88
  • [5] A Sampling Theorem for Symmetric Polygons
    Walnut, David
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 18 - 21
  • [6] GENERALIZED POLYGONS, SCABS AND GABS
    KANTOR, WM
    LECTURE NOTES IN MATHEMATICS, 1986, 1181 : 79 - 158
  • [7] Hyperbolic lines in generalized polygons
    vanBon, J
    Cuypers, H
    VanMaldeghem, H
    FORUM MATHEMATICUM, 1996, 8 (03) : 343 - 362
  • [8] ON CERTAIN COVERINGS OF GENERALIZED POLYGONS
    DELGADO, A
    WEISS, R
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1989, 21 : 235 - 242
  • [9] GENERALIZED PLANAR SWEEPING OF POLYGONS
    SAMBANDAN, K
    KEDEM, K
    WANG, KK
    JOURNAL OF MANUFACTURING SYSTEMS, 1992, 11 (04) : 246 - 257
  • [10] CODES ASSOCIATED WITH GENERALIZED POLYGONS
    BAGCHI, B
    SASTRY, NSN
    GEOMETRIAE DEDICATA, 1988, 27 (01) : 1 - 8