Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms

被引:52
|
作者
Sayantani, Ojha [1 ]
Gnanaseelan, C. [1 ]
机构
[1] Indian Inst Trop Meteorol, Pune 411008, Maharashtra, India
关键词
Indian Ocean; Subsurface variability; IOD; El Nino; Interannual variability; EL-NINO; EQUATORIAL PACIFIC; ATMOSPHERIC BRIDGE; DIPOLE EVENTS; MIXED-LAYER; ENSO; CLIMATE; SURFACE; IMPACT; MODE;
D O I
10.1007/s00382-014-2379-y
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The first two leading modes of interannual variability of sea surface temperature in the Tropical Indian Ocean (TIO) are governed by El Nino Southern Oscillation and Indian Ocean Dipole (IOD) respectively. TIO subsurface however does not co-vary with the surface. The patterns of the first mode of TIO subsurface temperature variability and their vertical structure are found to closely resemble the patterns of IOD and El Nino co-occurrence years. These co-occurrence years are characterized by a north-south subsurface dipole rather than a conventional IOD forced east-west dipole. This subsurface dipole is forced by wind stress curl anomalies, driven mainly by meridional shear in the zonal wind anomalies. A new subsurface dipole index (SDI) has been defined in this study to quantify the intensity of the north-south dipole mode. The SDI peaks during December to February (DJF), a season after the dipole mode index peaks. It is found that this subsurface north-south dipole is a manifestation of the internal mode of variability of the Indian Ocean forced by IOD but modulated by Pacific forcing. The seasonal evolution of thermocline, subsurface temperature and the corresponding leading modes of variability further support this hypothesis. Positive wind stress curl anomalies in the south and negative wind stress curl anomalies in the north of 5 degrees S force (or intensify) downwelling and upwelling waves respectively during DJF. These waves induce strong subsurface warming in the south and cooling in the north (especially during DJF) and assist the formation and/or maintenance of the north-south subsurface dipole. A thick barrier layer forms in the southern TIO, supporting the long persistence of anomalous subsurface warming. To the best of our knowledge the existence of such north-south subsurface dipole in TIO is being reported for the first time.
引用
收藏
页码:2447 / 2462
页数:16
相关论文
共 50 条
  • [1] Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms
    Ojha Sayantani
    C. Gnanaseelan
    [J]. Climate Dynamics, 2015, 44 : 2447 - 2462
  • [2] Multidecadal to decadal variability in the equatorial Indian Ocean subsurface temperature and the forcing mechanisms
    Mohapatra, Sandeep
    Gnanaseelan, C.
    Deepa, J. S.
    [J]. CLIMATE DYNAMICS, 2020, 54 (7-8) : 3475 - 3487
  • [3] Multidecadal to decadal variability in the equatorial Indian Ocean subsurface temperature and the forcing mechanisms
    Sandeep Mohapatra
    C. Gnanaseelan
    J. S. Deepa
    [J]. Climate Dynamics, 2020, 54 : 3475 - 3487
  • [4] Asymmetry in the tropical Indian Ocean subsurface temperature variability
    Kakatkar, Rashmi
    Gnanaseelan, C.
    Chowdary, J. S.
    [J]. DYNAMICS OF ATMOSPHERES AND OCEANS, 2020, 90
  • [5] Biases in the Tropical Indian Ocean subsurface temperature variability in a coupled model
    Rashmi Kakatkar
    C. Gnanaseelan
    Jasti S. Chowdary
    J. S. Deepa
    Anant Parekh
    [J]. Climate Dynamics, 2019, 52 : 5325 - 5344
  • [6] Biases in the Tropical Indian Ocean subsurface temperature variability in a coupled model
    Kakatkar, Rashmi
    Gnanaseelan, C.
    Chowdary, Jasti S.
    Deepa, J. S.
    Parekh, Anant
    [J]. CLIMATE DYNAMICS, 2019, 52 (9-10) : 5325 - 5344
  • [7] Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole
    Rao, SA
    Behera, SK
    Masumoto, Y
    Yamagata, T
    [J]. DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2002, 49 (7-8) : 1549 - 1572
  • [8] Mechanisms for the interannual variability in the tropical Indian Ocean. Part I: The role of remote forcing from the tropical pacific
    Huang, Bohua
    Shukla, J.
    [J]. JOURNAL OF CLIMATE, 2007, 20 (13) : 2917 - 2936
  • [9] Subsurface influence on SST in the tropical Indian Ocean: structure and interannual variability
    Rao, SA
    Behera, SK
    [J]. DYNAMICS OF ATMOSPHERES AND OCEANS, 2005, 39 (1-2) : 103 - 135
  • [10] Regime shift in the decadal variability of the Indian Ocean subsurface temperature
    Sun, Shuangwen
    Fang, Yue
    Liu, Lin
    Wang, Huiwu
    Liu, Yanliang
    Zhang, Meiqi
    [J]. JOURNAL OF MARINE SYSTEMS, 2021, 216