Convergence of fixed point iteration for deblurring and denoising problem

被引:4
|
作者
Shi, Yuying [1 ]
Chang, Qianshun
Xu, Jing
机构
[1] N China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
[2] Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
关键词
deblurring; denoising; fixed point iteration; Bergman distance; Weiszfeld's method;
D O I
10.1016/j.amc.2006.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To solve deblurring and denoising problem, we present a proof of the global and linear convergence of fixed point iteration, as well as an estimate for the rate of convergence is given. We show the equivalence among three different iterative methods: half-quadratic regularization, iteration based on Bergman distance, Weiszfeld's method. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1178 / 1185
页数:8
相关论文
共 50 条
  • [1] Convergence of the fixed-point iteration for multilinear PageRank
    Huang, Jun
    Wu, Gang
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (05)
  • [2] A Convergence Theorem For Mann Fixed Point Iteration Procedure
    Rafiq, Arif
    [J]. APPLIED MATHEMATICS E-NOTES, 2006, 6 : 289 - 293
  • [3] Convergence of fixed point iteration for modified restoration problems
    Shi, Yuying
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 32 (01) : 31 - 39
  • [4] Convergence of Fixed Point Iteration for Modified Restoration Problems
    Yuying Shi
    [J]. Journal of Mathematical Imaging and Vision, 2008, 32 : 31 - 39
  • [5] A Fixed-Point Iteration Method With Quadratic Convergence
    Walker, K. P.
    Sham, T. -L.
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2012, 79 (03):
  • [6] New fixed point iteration and its rate of convergence
    Chauhan , Surjeet Singh
    Kumar, Naveen
    Imdad, Mohammad
    Asim, Mohammad
    [J]. OPTIMIZATION, 2023, 72 (09) : 2415 - 2432
  • [7] Convergence of a fixed point iteration method for the OSV model
    Yi, Dokkyun
    Kim, Do-Hyung
    Kim, Eunyoun
    Yang, Sung-Dae
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) : 1780 - 1790
  • [8] UNIQUENESS OF THE COMMON INVARIANT DENSITY AND THE CONVERGENCE OF THE FIXED POINT ITERATION
    Uhl, Peter M.
    Bohn, Hannah
    Rhee, Noah H.
    [J]. MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2019, 31 (02) : 113 - 120
  • [9] On the convergence of the iteration methods to a common fixed point for a pair of mappings
    Huang, JC
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (1-2): : 59 - 67
  • [10] Strong convergence of the CQ method for fixed point iteration processes
    Martinez-Yanes, C
    Xu, HK
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (11) : 2400 - 2411