On modules of bounded multiplicities for the symplectic algebras

被引:27
|
作者
Britten, DJ [1 ]
Lemire, FW [1 ]
机构
[1] Univ Windsor, Dept Math, Windsor, ON N9B 3P4, Canada
关键词
D O I
10.1090/S0002-9947-99-02338-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simple infinite dimensional highest weight modules having bounded weight multiplicities are classified as submodules of a tensor product. Also, it is shown that a simple torsion free module of finite degree tensored with a finite dimensional module is completely reducible.
引用
收藏
页码:3413 / 3431
页数:19
相关论文
共 50 条
  • [1] Modules with bounded weight multiplicities for simple Lie algebras
    Benkart, G
    Britten, D
    Lemire, F
    MATHEMATISCHE ZEITSCHRIFT, 1997, 225 (02) : 333 - 353
  • [2] Modules with bounded weight multiplicities for simple Lie algebras
    Georgia Benkart
    Daniel Britten
    Frank Lemire
    Mathematische Zeitschrift, 1997, 225 : 333 - 353
  • [3] Lie modules of bounded multiplicities
    Britten, DJ
    Lemire, FW
    ALGEBRAIC METHODS IN PHYSICS: SYMPOSIUM FOR THE 60TH BIRTHDAYS OF JIRI PATERA AND PAVEL WINTERNITZ, 2001, : 39 - 46
  • [4] Algebras with involution and multiplicities bounded by a constant
    Rizzo, Carla
    JOURNAL OF ALGEBRA, 2020, 547 : 556 - 578
  • [5] Group graded algebras and multiplicities bounded by a constant
    Cirrito, Alessio
    Giambruno, Antonio
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (02) : 259 - 268
  • [6] A characterization of PI algebras with bounded multiplicities of the cocharacters
    Mishchenko, SP
    Regev, A
    Zaicev, MV
    JOURNAL OF ALGEBRA, 1999, 219 (01) : 356 - 368
  • [7] Young modules and filtration multiplicities for Brauer algebras
    Robert Hartmann
    Rowena Paget
    Mathematische Zeitschrift, 2006, 254 : 333 - 357
  • [8] Young modules and filtration multiplicities for Brauer algebras
    Hartmann, Robert
    Paget, Rowena
    MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (02) : 333 - 357
  • [9] Finitely generated algebras with involution and multiplicities bounded by a constant
    Vieira, A. C.
    JOURNAL OF ALGEBRA, 2015, 422 : 487 - 503
  • [10] Cocharacters of group graded algebras and multiplicities bounded by one
    Giambruno, A.
    Milies, C. Polcino
    Valenti, A.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (08): : 1709 - 1715