Biomolecular simulations of membranes:: Physical properties from different force fields

被引:227
|
作者
Siu, Shirley W. I. [1 ]
Vacha, Robert [2 ,3 ]
Jungwirth, Pavel [2 ,3 ]
Boeckmann, Rainer A. [1 ]
机构
[1] Univ Saarland, Ctr Bioinformat, Theoret & Computat Membrane Biol, D-66041 Saarbrucken, Germany
[2] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CR-16610 Prague 6, Czech Republic
[3] Ctr Biomol & Complex Mol Syst, CR-16610 Prague 6, Czech Republic
来源
JOURNAL OF CHEMICAL PHYSICS | 2008年 / 128卷 / 12期
关键词
D O I
10.1063/1.2897760
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phospholipid force fields are of ample importance for the simulation of artificial bilayers, membranes, and also for the simulation of integral membrane proteins. Here, we compare the two most applied atomic force fields for phospholipids, the all-atom CHARMM27 and the united atom Berger force field, with a newly developed all-atom generalized AMBER force field (GAFF) for dioleoylphosphatidylcholine molecules. Only the latter displays the experimentally observed difference in the order of the C2 atom between the two acyl chains. The interfacial water dynamics is smoothly increased between the lipid carbonyl region and the bulk water phase for all force fields; however, the water order and with it the electrostatic potential across the bilayer showed distinct differences between the force fields. Both Berger and GAFF underestimate the lipid self-diffusion. GAFF offers a consistent force field for the atomic scale simulation of biomembranes. (C) 2008 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Force fields for biomolecular simulations
    Hagler, A.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [2] New developments in force fields for biomolecular simulations
    Nerenberg, Paul S.
    Head-Gordon, Teresa
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2018, 49 : 129 - 138
  • [3] An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution
    Fluitt, Aaron M.
    de Pablo, Juan J.
    [J]. BIOPHYSICAL JOURNAL, 2015, 109 (05) : 1009 - 1018
  • [4] Polarisable force fields: what do they add in biomolecular simulations?
    Inakollu, V. S. Sandeep
    Geerke, Daan P.
    Rowley, Christopher N.
    Yu, Haibo
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 61 : 182 - 190
  • [5] Automated fitting of transition state force fields for biomolecular simulations
    Quinn, Taylor R.
    Patel, Himani N.
    Koh, Kevin H.
    Haines, Brandon E.
    Norrby, Per-Ola
    Helquist, Paul
    Wiest, Olaf
    [J]. PLOS ONE, 2022, 17 (03):
  • [6] Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications
    Jing, Zhifeng
    Liu, Chengwen
    Cheng, Sara Y.
    Qi, Rui
    Walker, Brandon D.
    Piquemal, Jean-Philip
    Ren, Pengyu
    [J]. ANNUAL REVIEW OF BIOPHYSICS, VOL 48, 2019, 48 : 371 - 394
  • [7] Assessment of Biomolecular Force Fields for Molecular Dynamics Simulations in a Protein Crystal
    Hu, Zhongqiao
    Jiang, Jianwen
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (02) : 371 - 380
  • [8] Performance of Different Force Fields in Force Probe Simulations
    Schlesier, Thomas
    Diezemann, Gregor
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (06): : 1862 - 1871
  • [9] Conduction and Gating Properties of the TRAAK Channel from Molecular Dynamics Simulations with Different Force Fields
    Ocello, Riccardo
    Furini, Simone
    Lugli, Francesca
    Recanatini, Maurizio
    Domene, Carmen
    Masetti, Matteo
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) : 6532 - 6543
  • [10] Comparison of Biomolecular Force Fields for Alkanethiol Self-Assembled Monolayer Simulations
    Bhadra, Pratiti
    Siu, Shirley W. I.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (47): : 26340 - 26349