Modal Analysis of Power Systems with Eigendecomposition of Multivariate Autoregressive Models

被引:0
|
作者
Seppanen, Janne M. [1 ]
Haarla, Liisa C. [1 ]
Turunen, Jukka [2 ]
机构
[1] Aalto Univ, Dept Elect Engn, Sch Elect Engn, Espoo, Finland
[2] Statnett SF, Oslo, Norway
关键词
Electromechanical oscillation; modal analysis; multivariate methods; power system stability; wide area monitoring; ELECTROMECHANICAL MODES; EIGENMODES; PARAMETERS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Analysis of electromechanical modes provides substantial information regarding the power system stability. This paper introduces a novel approach to the measurement based modal analysis of power systems by using a multivariate autoregressive model (MAR). The MAR model utilizes data that are simultaneously measured from several locations in the power system through a wide area monitoring system (WAMS). The performance of the MAR model is analyzed by applying it to data generated with a 39-bus New England test system. In addition, the model is utilized for analyzing data generated with a detailed simulation model of the Nordic power system. The results indicate that the frequencies and damping ratios of electromechanical oscillatory modes can be accurately analyzed with the eigendecomposition of the MAR model. Thus, the MAR model is a promising identification technique for wide-area monitoring of electromechanical oscillations.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Structural analysis with Multivariate Autoregressive Index models
    Carriero, Andrea
    Kapetanios, George
    Marcellino, Massimiliano
    [J]. JOURNAL OF ECONOMETRICS, 2016, 192 (02) : 332 - 348
  • [2] MULTIVARIATE HYSTERETIC AUTOREGRESSIVE MODELS
    Tsay, Ruey
    [J]. STATISTICA SINICA, 2021, 31 : 2257 - 2274
  • [3] Proper multivariate conditional autoregressive models for spatial data analysis
    Gelfand, AE
    Vounatsou, P
    [J]. BIOSTATISTICS, 2003, 4 (01) : 11 - 25
  • [4] Bayesian analysis of multivariate threshold autoregressive models with missing data
    Calderon V., Sergio A.
    Nieto, Fabio H.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (01) : 296 - 318
  • [5] Functional MRI and multivariate autoregressive models
    Rogers, Baxter P.
    Katwal, Santosh B.
    Morgan, Victoria L.
    Asplund, Christopher L.
    Gore, John C.
    [J]. MAGNETIC RESONANCE IMAGING, 2010, 28 (08) : 1058 - 1065
  • [6] Recursive eigendecomposition via autoregressive analysis & ago-antagonistic regularization
    Barbaresco, F
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3969 - 3972
  • [7] Analysis of a multivariate autoregressive process
    Lardies, J
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1996, 10 (06) : 747 - 761
  • [8] Modal analysis of power systems to mitigate harmonic resonance considering load models
    Esmaili, Masoud
    Shayanfar, Heidar Ali
    Jalilian, Alireza
    [J]. ENERGY, 2008, 33 (09) : 1361 - 1368
  • [9] On the use of the multivariate autoregressive and relative power contribution models for determination of transient root cause
    Castillo-Duran, Rogelio
    Ortiz-Villafuerte, Javier
    Palacios, Javier C.
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2008, 238 (12) : 3413 - 3417
  • [10] Estimation of parameters and eigenmodes of multivariate autoregressive models
    Neumaier, A
    Schneider, T
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2001, 27 (01): : 27 - 57