Finite element analysis of nanofluid flow and heat transfer in a square cavity with two circular obstacles at different positions in the presence of magnetic field

被引:24
|
作者
Abbas, S. Z. [1 ]
Wang, Xiawa [1 ]
Khan, W. A. [2 ,3 ]
Hobiny, A. [2 ]
Iqbal, K. [4 ]
机构
[1] Duke Kunshan Univ, Div Nat & Appl Sci, Kunshan 215316, Jiangsu, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80207, Jeddah 21589, Saudi Arabia
[3] Mohi Ud Din Islamic Univ, Dept Math, Nerian Sharif 12010, Azad Jammu & Ka, Pakistan
[4] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
关键词
Finite element method; Navier stokes; Heat transfer; Nanofluid; Magnetic field; Rayleigh number; LID-DRIVEN CAVITY; CHEMICAL-REACTION; CONVECTION; IMPACT; SLIP;
D O I
10.1016/j.est.2022.104462
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A constructal design-based model is used to examine thermal management and heat augmentation inside a square cavity which is filled with Cu-water nanofluids. The concept of using varied pair impediments in the cavity is applied for the first time. A system of partial differential equations is used to derive the mathematical structure of the governing flow, which is then translated into a non-dimensional form using dimensionless variables. Numerical experiments are carried out by using a Galerkin finite element scheme for various values of the associated physical parameters. The effects of key parameters on streamlines, isotherms, dimensionless temperature, and Nusselt numbers are explored for various values of the Rayleigh number. Because of the synchronous motion, the streamlines and isotherms have a symmetrical distribution. The average Nusselt number drops as the Rayleigh number increases. It's worth noticing that as compared to the zero volume fraction parameter, the Nusselt number drops for all values of Ha. However, the Nusselt number increases dramatically for different values of phi.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Two-phase analysis of heat transfer of nanofluid flow in a cavity in the presence of a magnetic field, heating element, and a porous medium: A numerical approach
    Wei, Dechen
    Jiao, Yuanyuan
    Nasajpour-Esfahani, Navid
    Alizadeh, As'ad
    Zhao, Xiaoyang
    Refaish, Abdulhussein H.
    Al-Musawi, Tariq J.
    Mohammed, Yaser
    Hadrawi, Salema K.
    Alawadi, Ahmed Hussien Radie
    Alsalamy, Ali
    Togharie, D.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 584
  • [2] Heat transfer enhancement in a differentially heated square cavity in presence of an electric field - A finite element analysis
    Bandyopadhyay, A
    Sen, S
    Sarkar, A
    Bhattacharya, S
    JOURNAL OF ENHANCED HEAT TRANSFER, 2003, 10 (02) : 225 - 241
  • [4] Convection heat transfer of MHD fluid flow in the circular cavity with various obstacles: Finite element approach
    Mirzaei A.
    Jalili P.
    Afifi M.D.
    Jalili B.
    Ganji D.D.
    International Journal of Thermofluids, 2023, 20
  • [5] Nanofluid flow and heat transfer in a cavity with variable magnetic field
    Sheikholeslami, M.
    Vajravelu, K.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 298 : 272 - 282
  • [6] CONVECTIVE HEAT TRANSFER IN A SQUARE CAVITY WITH EMBEDDED CIRCULAR HEATED BLOCK AT DIFFERENT POSITIONS
    Oyewola, M.
    Afolabi, S. I.
    Ismail, O. S.
    Olasinde, M. O.
    FRONTIERS IN HEAT AND MASS TRANSFER, 2022, 18
  • [7] Finite Element Analysis of Convective Heat Transfer in a Linearly Heated Porous Trapezoidal Cavity in the Presence of a Magnetic Field
    Sanzina Sultana Suchana
    Mohammad Mokaddes Ali
    International Journal of Applied and Computational Mathematics, 2024, 10 (4)
  • [8] FINITE-ELEMENT ANALYSIS OF OSCILLATORY FLOW WITH HEAT-TRANSFER INSIDE A SQUARE CAVITY
    RAMASWAMY, B
    JUE, TC
    AKIN, JE
    AIAA JOURNAL, 1992, 30 (02) : 412 - 422
  • [9] Heat transfer enhancement of Cu-water nanofluid filled in a square cavity with a circular disk under a magnetic field
    Kobra, Farizatul
    Quddus, Noor
    Alim, M. Abdul
    10TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2013), 2014, 90 : 582 - 587
  • [10] Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field
    Sheikholeslami, M.
    Hatami, M.
    Ganji, D. D.
    JOURNAL OF MOLECULAR LIQUIDS, 2014, 190 : 112 - 120