Law of large numbers for uncertain random variables with different chance distributions

被引:21
|
作者
Gao, Rong [1 ]
Sheng, Yuhong [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertain variable; uncertain random variable; law of large numbers;
D O I
10.3233/IFS-162187
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Chance theory is put forward as a tool to deal with a complex system including randomness and uncertainty. As a fundamental concept in chance theory, uncertain random variable is an extension of random variable and uncertain variable. This paper obtains a new law of large numbers for independent uncertain random variables but not necessarily identically distributed.
引用
收藏
页码:1227 / 1234
页数:8
相关论文
共 50 条
  • [1] Law of Large Numbers for Uncertain Random Variables
    Yao, Kai
    Gao, Jinwu
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 24 (03) : 615 - 621
  • [2] A stronger law of large numbers for uncertain random variables
    Yuhong Sheng
    Gang Shi
    Zhongfeng Qin
    [J]. Soft Computing, 2018, 22 : 5655 - 5662
  • [3] A stronger law of large numbers for uncertain random variables
    Sheng, Yuhong
    Shi, Gang
    Qin, Zhongfeng
    [J]. SOFT COMPUTING, 2018, 22 (17) : 5655 - 5662
  • [4] Uncertain random variables and laws of large numbers under U-C chance space
    Hu, Feng
    Fu, Xiaoting
    Qu, Ziyi
    [J]. FUZZY SETS AND SYSTEMS, 2024, 493
  • [5] On Some Laws of Large Numbers for Uncertain Random Variables
    Nowak, Piotr
    Hryniewicz, Olgierd
    [J]. SYMMETRY-BASEL, 2021, 13 (12):
  • [6] A Law of Large Numbers for Fuzzy Random Variables
    Chen, Yanju
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2009, 12 (05): : 1021 - 1032
  • [7] Chance Distribution of Fuzzy Random Variables and Laws of Large numbers
    Yang, Lixing
    Li, Xiang
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (10): : 3881 - 3893
  • [8] On the strong law of large numbers for identically distributed random variables irrespective of their joint distributions
    Rosalsky, Andrew
    Stoica, George
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (17-18) : 1265 - 1270
  • [9] FURTHER RESULTS ON LAWS OF LARGE NUMBERS FOR UNCERTAIN RANDOM VARIABLES
    Hu, Feng
    Fu, Xiaoting
    Qu, Ziyi
    Zong, Zhaojun
    [J]. KYBERNETIKA, 2023, 59 (02) : 314 - 338
  • [10] On Strong Law of Large Numbers for Dependent Random Variables
    Wang, Zhongzhi
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,