CARPool covariance: fast, unbiased covariance estimation for large-scale structure observables

被引:20
|
作者
Chartier, Nicolas [1 ,2 ]
Wandelt, Benjamin D. [2 ,3 ]
机构
[1] Univ Paris, Sorbonne Univ, Univ PSL, Lab Phys,ENS,CNRS, F-75005 Paris, France
[2] Sorbonne Univ, Inst Astrophys Paris, CNRS, UMR 7095, 98 Bis Bd Arago, F-75014 Paris, France
[3] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA
关键词
methods: statistical; large-scale structure of Universe; COMPARING APPROXIMATE METHODS; MATTER POWER SPECTRUM; DARK-MATTER; MOCK CATALOGS; NUMERICAL SIMULATIONS; SHRINKAGE ESTIMATION; PARAMETER-ESTIMATION; PRECISION MATRIX; COSMOLOGY; ACCURATE;
D O I
10.1093/mnras/stab3097
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The covariance matrix Sigma of non-linear clustering statistics that are measured in current and upcoming surveys is of fundamental interest for comparing cosmological theory and data and a crucial ingredient for the likelihood approximations underlying widely used parameter inference and forecasting methods. The extreme number of simulations needed to estimate Sigma to sufficient accuracy poses a severe challenge. Approximating Sigma using inexpensive but biased surrogates introduces model error with respect to full simulations, especially in the non-linear regime of structure growth. To address this problem, we develop a matrix generalization of Convergence Acceleration by Regression and Pooling (CARPool) to combine a small number of simulations with fast surrogates and obtain low-noise estimates of Sigma that are unbiased by construction. Our numerical examples use CARPool to combine GADGET-III N-body simulations with fast surrogates computed using COmoving Lagrangian Acceleration (COLA). Even at the challenging redshift z = 0.5, we find variance reductions of at least O(10(1)) and up to O(10(4)) for the elements of the matter power spectrum covariance matrix on scales 8.9 x 10(-3) < k(max) < 1.0h Mpc(-1). We demonstrate comparable performance for the covariance of the matter bispectrum, the matter correlation function, and probability density function of the matter density field. We compare eigenvalues, likelihoods, and Fisher matrices computed using the CARPool covariance estimate with the standard sample covariance and generally find considerable improvement except in cases where Sigma is severely ill-conditioned.
引用
收藏
页码:2220 / 2233
页数:14
相关论文
共 50 条
  • [1] Fast and easy super-sample covariance of large-scale structure observables
    Lacasa, Fabien
    Grain, Julien
    ASTRONOMY & ASTROPHYSICS, 2019, 624
  • [2] Fast Component Pursuit for Large-Scale Inverse Covariance Estimation
    Han, Lei
    Zhang, Yu
    Zhang, Tong
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1585 - 1594
  • [3] LARGE-SCALE ESTIMATION OF VARIANCE AND COVARIANCE COMPONENTS
    FRALEY, C
    BURNS, PJ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (01): : 192 - 209
  • [4] Non-linear shrinkage estimation of large-scale structure covariance
    Joachimi, Benjamin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 466 (01) : L83 - L87
  • [5] LARGE-SCALE SPARSE INVERSE COVARIANCE MATRIX ESTIMATION
    Bollhoefer, Matthias
    Eftekhari, Aryan
    Scheidegger, Simon
    Schenk, Olaf
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : A380 - A401
  • [6] KiDS-Legacy: Covariance validation and the unified OneCovariance framework for projected large-scale structure observables
    Reischke, Robert
    Unruh, Sandra
    Asgari, Marika
    Dvornik, Andrej
    Hildebrandt, Hendrik
    Joachimi, Benjamin
    Porth, Lucas
    von Wietersheim-Kramsta, Maximilian
    van den Busch, Jan Luca
    Stölzner, Benjamin
    Wright, Angus H.
    Yan, Ziang
    Bilicki, Maciej
    Burger, Pierre
    Chisari, Nora Elisa
    Harnois-Déraps, Joachim
    Georgiou, Christos
    Heymans, Catherine
    Jalan, Priyanka
    Joudaki, Shahab
    Kuijken, Konrad
    Li, Shun-Sheng
    Linke, Laila
    Mahony, Constance
    Sciotti, Davide
    Tröster, Tilman
    Yoon, Mijin
    arXiv,
  • [7] Bayesian hierarchical model for large-scale covariance matrix estimation
    Zhu, Dongxiao
    Hero, Alfred O., III
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (10) : 1311 - 1326
  • [8] LARGE-SCALE l0 SPARSE INVERSE COVARIANCE ESTIMATION
    Marjanovic, Goran
    Ulfarsson, Magnus
    Solo, Victor
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4767 - 4771
  • [9] UNBIASED RISK ESTIMATION METHOD FOR COVARIANCE ESTIMATION
    Lescornel, Helene
    Loubes, Jean-Michel
    Chabriac, Claudie
    ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 251 - 264
  • [10] Fast Covariance Matrix Adaptation for Large-Scale Black-Box Optimization
    Li, Zhenhua
    Zhang, Qingfu
    Lin, Xi
    Zhen, Hui-Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (05) : 2073 - 2083