A quantum-inspired classifier for clonogenic assay evaluations

被引:20
|
作者
Sergioli, Giuseppe [1 ]
Militello, Carmelo [2 ]
Rundo, Leonardo [3 ,4 ]
Minafra, Luigi [2 ]
Torrisi, Filippo [5 ]
Russo, Giorgio [2 ]
Chow, Keng Loon [1 ]
Giuntini, Roberto [1 ,6 ]
机构
[1] Univ Cagliari, Cagliari, Italy
[2] Italian Natl Res Council, Inst Mol Bioimaging & Physiol, Palermo, Italy
[3] Univ Cambridge, Dept Radiol, Cambridge, England
[4] Univ Cambridge, Canc Res UK Cambridge Ctr, Cambridge, England
[5] Univ Catania, Dept Biomed & Biotechnol Sci, Catania, Italy
[6] Accademia Lincei, Ctr Linceo Interdisciplinare Beniamino Segre, Rome, Italy
关键词
D O I
10.1038/s41598-021-82085-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advances in Quantum Machine Learning (QML) have provided benefits to several computational processes, drastically reducing the time complexity. Another approach of combining quantum information theory with machine learning-without involving quantum computers-is known as Quantum-inspired Machine Learning (QiML), which exploits the expressive power of the quantum language to increase the accuracy of the process (rather than reducing the time complexity). In this work, we propose a large-scale experiment based on the application of a binary classifier inspired by quantum information theory to the biomedical imaging context in clonogenic assay evaluation to identify the most discriminative feature, allowing us to enhance cell colony segmentation. This innovative approach offers a two-fold result: (1) among the extracted and analyzed image features, homogeneity is shown to be a relevant feature in detecting challenging cell colonies; and (2) the proposed quantum-inspired classifier is a novel and outstanding methodology, compared to conventional machine learning classifiers, for the evaluation of clonogenic assays.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A quantum-inspired classifier for clonogenic assay evaluations
    Giuseppe Sergioli
    Carmelo Militello
    Leonardo Rundo
    Luigi Minafra
    Filippo Torrisi
    Giorgio Russo
    Keng Loon Chow
    Roberto Giuntini
    [J]. Scientific Reports, 11
  • [2] Towards a Quantum-Inspired Binary Classifier
    Tiwari, Prayag
    Melucci, Massimo
    [J]. IEEE ACCESS, 2019, 7 : 42354 - 42372
  • [3] A quantum-inspired version of the nearest mean classifier
    Giuseppe Sergioli
    Enrica Santucci
    Luca Didaci
    Jarosław A. Miszczak
    Roberto Giuntini
    [J]. Soft Computing, 2018, 22 : 691 - 705
  • [4] A quantum-inspired version of the nearest mean classifier
    Sergioli, Giuseppe
    Santucci, Enrica
    Didaci, Luca
    Miszczak, Jaroslaw A.
    Giuntini, Roberto
    [J]. SOFT COMPUTING, 2018, 22 (03) : 691 - 705
  • [5] A Quantum-Inspired Classifier for Early Web Bot Detection
    Cabri, Alberto
    Masulli, Francesco
    Rovetta, Stefano
    Suchacka, Grazyna
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1684 - 1697
  • [6] Breast Cancer Diagnosis Using Quantum-Inspired Classifier
    Chakravarthy, S. R. Sannasi
    Rajaguru, Harikumar
    [J]. COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 737 - 747
  • [7] Quantum-inspired art
    Crease, Robert P.
    [J]. PHYSICS WORLD, 2015, 28 (02) : 16 - 16
  • [8] Quantum-inspired maximizer
    Zak, Michail
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (04)
  • [9] Quantum-inspired teleportation
    Zak, Michail
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 306 - 315
  • [10] Quantum algorithms and quantum-inspired algorithms
    [J]. Zhang, Y. (zhangyinudt@nudt.edu.cn), 1835, Science Press (36):