Sharp Blow-Up Profiles of Positive Solutions for a Class of Semilinear Elliptic Problems
被引:8
|
作者:
Li, Wan-Tong
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R ChinaLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
Li, Wan-Tong
[1
]
Lopez-Gomez, Julian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Complutense Madrid, Inst Interdisciplinary, Dept Math Anal & Appl Math, Math IMI, Madrid 28040, SpainLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
Lopez-Gomez, Julian
[2
]
Sun, Jian-Wen
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R ChinaLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
Sun, Jian-Wen
[1
]
机构:
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Univ Complutense Madrid, Inst Interdisciplinary, Dept Math Anal & Appl Math, Math IMI, Madrid 28040, Spain
This paper analyzes the behavior of the positive solution theta(epsilon) of the perturbed problem {-Delta u = lambda m(x)u - [a(epsilon)(x) + b(epsilon)(x)]u(p) = 0 in Omega, Bu = 0 on partial derivative Omega, as epsilon down arrow 0, where a(epsilon)(x) approximate to epsilon(alpha) a(x) and b(epsilon)(x) approximate to epsilon(beta)b(x) for some alpha >= 0 and beta >= 0, and some Holder continuous functions a(x) and b(x) such that a >= 0 (i.e., a >= 0 and a a not equivalent to 0) and min(Omega) b > 0. The most intriguing and interesting case arises when a(x) degenerates, in the sense that Omega(0) int a(-1) (0) is a non-empty smooth open subdomain of Omega, as in this case a "blow-up" phenomenon appears due to the spatial degeneracy of a(x) for sufficiently large lambda. In all these cases, the asymptotic behavior of theta(epsilon) will be characterized according to the several admissible values of the parameters alpha and beta. Our study reveals that there may exist two different blow-up speeds for theta(epsilon) in the degenerate case.
机构:
Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
Boscaggin, Alberto
Dambrosio, Walter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
Dambrosio, Walter
Papini, Duccio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Udine, Dipartimento Sci Matemat Informat & Fis, Via Sci 206, I-33100 Udine, ItalyUniv Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy