PigLeg: prediction of swine phenotype using machine learning

被引:12
|
作者
Bakoev, Siroj [1 ]
Getmantseva, Lyubov [1 ]
Kolosova, Maria [2 ]
Kostyunina, Olga [1 ]
Chartier, Duane R. [3 ]
Tatarinova, Tatiana, V [4 ,5 ,6 ,7 ]
机构
[1] LK Ernst Fed Sci Ctr Anim Husb, Moscow, Russia
[2] Don State Agr Univ, Persianovsky, Rostov Region, Russia
[3] ICAI, Culver City, CA USA
[4] Univ La Verne, Dept Biol, La Verne, CA USA
[5] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[6] Vavilov Inst Gen Genet, Moscow, Russia
[7] Siberian Fed Univ, Krasnoyarsk, Russia
来源
PEERJ | 2020年 / 8卷
基金
俄罗斯基础研究基金会;
关键词
Artificial intelligence; Bioinformatics; Computational biology; Data mining and machine learning; Evolutionary studies; Mathematical biology; Animal behavior; LEG WEAKNESS; OSTEOCHONDROSIS; ALGORITHMS;
D O I
10.7717/peerj.8764
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Industrial pig farming is associated with negative technological pressure on the bodies of pigs. Leg weakness and lameness are the sources of significant economic loss in raising pigs. Therefore, it is important to identify the predictors of limb condition. This work presents assessments of the state of limbs using indicators of growth and meat characteristics of pigs based on machine learning algorithms. We have evaluated and compared the accuracy of prediction for nine ML classification algorithms (Random Forest, K-Nearest Neighbors, Artificial Neural Networks, C50Tree, Support Vector Machines, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) and have identified the Random Forest and K-Nearest Neighbors as the best-performing algorithms for predicting pig leg weakness using a small set of simple measurements that can be taken at an early stage of animal development. Measurements of Muscle Thickness, Back Fat amount, and Average Daily Gain were found to be significant predictors of the conformation of pig limbs. Our work demonstrates the utility and relative ease of using machine learning algorithms to assess the state of limbs in pigs based on growth rate and meat characteristics.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Plant Genotype to Phenotype Prediction Using Machine Learning
    Danilevicz, Monica F.
    Gill, Mitchell
    Anderson, Robyn
    Batley, Jacqueline
    Bennamoun, Mohammed
    Bayer, Philipp E.
    Edwards, David
    [J]. FRONTIERS IN GENETICS, 2022, 13
  • [2] Phenotype based prediction of WES outcome using machine learning
    Dingemans, Alexander J. M.
    Hinne, Max
    Jansen, Sandra
    van Reeuwijk, Jeroen
    de Leeuw, Nicole
    Pfundt, Rolph
    van Bon, Bregje W.
    Vulto-van Silfhout, Anneke T.
    Kleefstra, Tjitske
    Koolen, David A.
    van Gerven, Marcel A. J.
    Vissers, Lisenka E. L. M.
    de Vries, Bert B. A.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (SUPPL 1) : 506 - 506
  • [3] Infection prediction in swine populations with machine learning
    Avishai Halev
    Beatriz Martínez-López
    Maria Clavijo
    Carlos Gonzalez-Crespo
    Jeonghoon Kim
    Chao Huang
    Seth Krantz
    Rebecca Robbins
    Xin Liu
    [J]. Scientific Reports, 13
  • [4] Infection prediction in swine populations with machine learning
    Halev, Avishai
    Martinez-Lopez, Beatriz
    Clavijo, Maria
    Gonzalez-Crespo, Carlos
    Kim, Jeonghoon
    Huang, Chao
    Krantz, Seth
    Robbins, Rebecca
    Liu, Xin
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Swine Flu Predication Using Machine Learning
    Bhatt, Dvijesh
    Vyas, Daiwat
    Kumhar, Malaram
    Patel, Ajay
    [J]. INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS, ICTIS 2018, VOL 2, 2019, 107 : 611 - 617
  • [6] Prediction of average daily gain of swine based on machine learning
    Lee, Woongsup
    Han, Kang-Hwi
    Kim, Hyeon Tae
    Choi, Heechul
    Ham, Younghwa
    Ban, Tae-Won
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (02) : 923 - 933
  • [7] Allelic phenotype prediction of phenylketonuria based on the machine learning method
    Yang Fang
    Jinshuang Gao
    Yaqing Guo
    Xiaole Li
    Enwu Yuan
    Erfeng Yuan
    Liying Song
    Qianqian Shi
    Haiyang Yu
    Dehua Zhao
    Linlin Zhang
    [J]. Human Genomics, 17
  • [8] Machine Learning Strategies for Improved Phenotype Prediction in Underrepresented Populations
    Bonet, David
    Levin, May
    Montserrat, Daniel Mas
    Ioannidis, Alexander G.
    [J]. BIOCOMPUTING 2024, PSB 2024, 2024, : 404 - 418
  • [9] Allelic phenotype prediction of phenylketonuria based on the machine learning method
    Fang, Yang
    Gao, Jinshuang
    Guo, Yaqing
    Li, Xiaole
    Yuan, Enwu
    Yuan, Erfeng
    Song, Liying
    Shi, Qianqian
    Yu, Haiyang
    Zhao, Dehua
    Zhang, Linlin
    [J]. HUMAN GENOMICS, 2023, 17 (01)
  • [10] ARTICLE Phenotype based prediction of exome sequencing outcome using machine learning for neurodevelopmental disorders
    Dingemans, Alexander J. M.
    Hinne, Max
    Jansen, Sandra
    van Reeuwijk, Jeroen
    de Leeuw, Nicole
    Pfundt, Rolph
    van Bon, Bregje W.
    Vulto-van Silfhout, Anneke T.
    Kleefstra, Tjitske
    Koolen, David A.
    van Gerven, Marcel A. J.
    Vissers, Lisenka E. L. M.
    de Vries, Bert B. A.
    [J]. GENETICS IN MEDICINE, 2022, 24 (03) : 645 - 653