Dynamic Model for estimating the Macroscopic Fundamental Diagram

被引:6
|
作者
Hoai-Nam Nguyen [1 ]
Fishbain, Barak [2 ]
Bitar, Eilyan [3 ]
Mahalel, David [4 ]
Gutman, Per-Olof [4 ]
机构
[1] IFP Energies Nouvelles, Rond Point Echangeur Solaize, BP 3, F-69360 Solaize, France
[2] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel
[3] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY USA
[4] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 03期
关键词
Macroscopic Fundamental Diagram (MFD); Traffic Network State; Dynamic Estimation; Traffic Control; Kalman-Filter; CELL TRANSMISSION MODEL; DENSITIES; WAVES;
D O I
10.1016/j.ifacol.2016.07.050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Macroscopic Fundamental Diagram (MFD) relates the number of circulating vehicles (or accumulation) to a neighbourhoods average speed or flow. In theory the MFD has a well-defined maximum which remains invariant over time. Recent studies, however, suggest that in practice this is not the case, and the MFD does present a variations over time. These variations in the MFD render traffic simulations, modelling and control schemes inaccurate, as these tools do not capture the dynamic nature of the MFD. This paper presents a dynamic model for estimating the MFD, so it does capture the MFDs time varying nature. A mathematical Kalman-filter based framework for solving the model and estimating the MFD are also presented. The application of the method on a small scale example shows the potential of the method. (C) 2016, IFAC (International Federation of Antomatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:297 / 302
页数:6
相关论文
共 50 条
  • [1] Centralized Dynamic Vehicle Routing with Macroscopic Fundamental Diagram
    Yang, Hao
    Farid, Yashar Zeinali
    Ucar, Seyhan
    Oguchi, Kentaro
    [J]. 2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2023 - 2029
  • [2] Optimal Dynamic Route Guidance: A Model Predictive Approach Using the Macroscopic Fundamental Diagram
    Hajiahmadi, Mohammad
    Knoop, Victor L.
    De Schutter, Bart
    Hellendoorn, Hans
    [J]. 2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 1022 - 1028
  • [3] Macroscopic fundamental diagram in simple model of urban traffic
    Yoshioka N.
    Shimada T.
    Ito N.
    [J]. Yoshioka, Naoki (naoki.yoshioka@riken.jp), 2017, Springer Japan (22) : 217 - 221
  • [4] Integration of a cell transmission model and macroscopic fundamental diagram: Network aggregation for dynamic traffic models
    Zhang, Zhao
    Wolshon, Brian
    Dixit, Vinayak V.
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2015, 55 : 298 - 309
  • [5] A dynamic cordon pricing scheme combining the Macroscopic Fundamental Diagram and an agent-based traffic model
    Zheng, Nan
    Waraich, Rashid A.
    Axhausen, Kay W.
    Geroliminis, Nikolas
    [J]. TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2012, 46 (08) : 1291 - 1303
  • [6] Applications of the Generalized Macroscopic Fundamental Diagram
    Hoogendoorn, Serge P.
    Knoop, Victor L.
    van Lint, Hans
    Vu, Hai L.
    [J]. TRAFFIC AND GRANULAR FLOW '13, 2015, : 577 - 583
  • [7] Macroscopic Fundamental Diagram for Train Platforms
    Daamen, Winnie
    van den Heuvel, Jeroen
    Knoop, Victor L.
    Hoogendoorn, Serge P.
    [J]. TRAFFIC AND GRANULAR FLOW '17, 2019, : 365 - 372
  • [8] Data fusion for estimating Macroscopic Fundamental Diagram in large-scale urban networks
    Saffari, Elham
    Yildirimoglu, Mehmet
    Hickman, Mark
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 137
  • [9] Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium
    Guo, Qiangqiang
    Ban, Xuegang
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2020, 136 : 87 - 109
  • [10] Neuro-dynamic programming for optimal control of macroscopic fundamental diagram systems
    Su, Z. C.
    Chow, Andy H. F.
    Zheng, N.
    Huang, Y. P.
    Liang, E. M.
    Zhong, R. X.
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 116