Comments on "Robust Stability and Stabilization of Fractional-Order Interval Systems With the Fractional Order α: The 0 < α < 1 Case"

被引:16
|
作者
Aguiar, Braulio [1 ]
Gonzalez, Temoatzin [1 ]
Bernal, Miguel [1 ]
机构
[1] Sonora Inst Technol, Dept Elect & Elect Engn, Obregon, Sonora, Mexico
关键词
Fractional order - Interval systems - Linear time invariant - Robust stability - Sufficient and necessary condition;
D O I
10.1109/TAC.2014.2332711
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note considers the work entitled "Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order alpha: The 0 < alpha < 1 Case" by Lu and Chen, where the authors meant to provide sufficient and necessary conditions for stability of fractional-order linear-time-invariant interval systems. As this note proves, conditions are only sufficient, since necessity relies unsuitably on the certain case. An example is provided.
引用
收藏
页码:582 / 583
页数:2
相关论文
共 50 条
  • [1] Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order α: The 0 &lt; α &lt; 1 Case
    Lu, Jun-Guo
    Chen, Yang-Quan
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (01) : 152 - 158
  • [2] Robust stabilization of uncertain descriptor fractional-order systems with the fractional order α(0 &lt; α &lt; 1)
    Zhang, Xuefeng
    Li, Bingxin
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 560 - 563
  • [3] Robust Stability and Stabilization of Interval Uncertain Descriptor Fractional-Order Systems with the Fractional-Order α: The 1 ≤ α &lt; 2 Case
    Li, Yuanhua
    Liu, Heng
    Wang, Hongxing
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [4] Robust stability and stabilization of fractional order interval systems with coupling relationships: The 0 &lt; α &lt; 1 case
    Li, Chuang
    Wang, Jingcheng
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (07): : 2406 - 2419
  • [5] Robust stabilization for rectangular descriptor fractional order interval systems with order 0 &lt; α &lt; 1
    Zhang, Xuefeng
    Zhao, Zeli
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 366
  • [6] Robust stability of fractional-order systems with mixed uncertainties: The 0 &lt; α &lt; 1 case
    Zhang, Qing-Hao
    Lu, Jun-Guo
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
  • [7] Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: The 0 &lt; α &lt; 1 case
    Zhang, Xuefeng
    Chen, YangQuan
    [J]. ISA TRANSACTIONS, 2018, 82 : 42 - 50
  • [8] H∞ control for singular fractional-order interval systems: The 0 &lt; α &lt; 1 case
    Zhang, Qing-Hao
    Lu, Jun-Guo
    [J]. ISA TRANSACTIONS, 2021, 110 : 105 - 116
  • [9] THE CONTROLLER DESIGN FOR SINGULAR FRACTIONAL-ORDER SYSTEMS WITH FRACTIONAL ORDER 0 &lt; α &lt; 1
    Zhan, T.
    Ma, S. P.
    [J]. ANZIAM JOURNAL, 2018, 60 (02): : 230 - 248
  • [10] Robust H∞ Control of Fractional-Order Switched Systems with Order 0 &lt; α &lt; 1 and Uncertainty
    Li, Bingxin
    Zhao, Xiangfei
    Liu, Yaowei
    Zhao, Xin
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (03)