Bivariate Discrete Nadarajah and Haghighi Distribution: Properties and Different Methods of Estimation

被引:4
|
作者
Ali, Sajid [1 ]
Shafqat, Muhammad [1 ]
Shah, Ismail [1 ]
Dey, Sanku [2 ]
机构
[1] Quaid I Azam Univ, Dept Stat, Islamabad 45320, Pakistan
[2] St Anthonys Coll, Dept Stat, Shillong 793001, Meghalaya, India
关键词
Bivariate Discrete Nadarajah and Haghighi Distribution; Method of maximum likelihood estimation; Method of least squares; Method of percentile estimation; Anderson Darling estimation method; Nadarajah and Haghighi Distribution; GENERALIZED EXPONENTIAL-DISTRIBUTION; UNIVARIATE; EXTENSION; PARAMETER;
D O I
10.2298/FIL1917589A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The exponential distribution is commonly used to model different phenomena in statistics and reliability engineering. A new extension of exponential distribution known as the Nadarajah and Haghighi [An extension of the exponential distribution, Statistics: A Journal of Theoretical and Applied Statistics 45 (2011) 543-558.] distribution was introduced in the literature to accommodate the inflation of zero in the data. In practice, however, discrete data are easy to collect as compared to continuous data. Discrete bivariate distributions play important roles in modeling bivariate lifetime count data. Thus focusing on the utility of discrete data, this study presents a new bivariate discrete Nadarajah and Haghighi distribution. We discuss some basic properties of the proposed distribution and study seven different methods of estimation for the unknown parameters to assess the performance of the proposed bivariate discrete model. Two data sets are also analyzed to demonstrate how the proposed model may work in practice. Results show that the proposed model is very flexible and performs better than some of the existing models.
引用
收藏
页码:5589 / 5610
页数:22
相关论文
共 50 条
  • [1] UNIVARIATE DISCRETE NADARAJAH AND HAGHIGHI DISTRIBUTION: PROPERTIES AND DIFFERENT METHODS OF ESTIMATION
    Shafqat, Muhammad
    Ali, Sajid
    Shah, Ismail
    Dey, Sanku
    [J]. STATISTICA, 2020, 80 (03): : 301 - 330
  • [2] The Poisson Nadarajah-Haghighi Distribution: Different Methods of Estimation
    Ali, Sajid
    Dey, Sanku
    Tahir, M. H.
    Mansoor, Muhammad
    [J]. JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2021, 14 (02): : 415 - 450
  • [3] The Transmuted Inverted Nadarajah-Haghighi Distribution: Different Estimation Methods and Applications
    Mandouh, R. M.
    [J]. STATISTICS AND APPLICATIONS, 2022, 20 (01): : 51 - 73
  • [4] The inverted Nadarajah-Haghighi distribution: estimation methods and applications
    Tahir, M. H.
    Cordeiro, Gauss M.
    Ali, Sajid
    Dey, Sanku
    Manzoor, Aroosa
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (14) : 2775 - 2798
  • [5] Power Inverted Nadarajah-Haghighi Distribution: Properties, Estimation, and Applications
    Ahsan-ul-Haq, Muhammad
    Ahmed, Junaid
    Albassam, Mohammed
    Aslam, Muhammad
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [6] A WEIGHTED NADARAJAH AND HAGHIGHI DISTRIBUTION
    Khan, Muhammad Nauman
    Saboor, Abdus
    Cordeiro, Gauss M.
    Nazir, Mamoona
    Pescim, Rodrigo R.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 133 - 140
  • [7] The Marshall–Olkin Inverted Nadarajah–Haghighi Distribution: Estimation and Applications
    Raffiq G.
    Dar I.S.
    Haq M.A.U.
    Ramos E.
    [J]. Annals of Data Science, 2022, 9 (06) : 1323 - 1338
  • [8] The beta Nadarajah-Haghighi distribution
    Dias, Cicero R. B.
    Alizadeh, Morad
    Cordeiro, Gauss M.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (05): : 1302 - 1320
  • [9] The Nadarajah-Haghighi Lindley distribution
    Pena-Ramirez, Fernando A.
    Guerra, Renata R.
    Cordeiro, Gauss M.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2019, 91 (01):
  • [10] Bivariate Weibull Distribution: Properties and Different Methods of Estimation
    Almetwally E.M.
    Muhammed H.Z.
    El-Sherpieny E.-S.A.
    [J]. Annals of Data Science, 2020, 7 (01) : 163 - 193