BOUNDARY REGULARITY FOR A DEGENERATE ELLIPTIC EQUATION WITH MIXED BOUNDARY CONDITIONS

被引:3
|
作者
Niang, Alassane [1 ]
机构
[1] Cheikh Anta Diop Univ Dakar UCAD, Dept Math & Comp Sci, BP 5005, Dakar, Senegal
关键词
Degenerate elliptic equation; boundary regularity; fractional Laplacian; blow-up analysis; compactness; Dirichlet-Neumann boundary conditions; FRACTIONAL LAPLACIANS; OBSTACLE PROBLEM; MU-TRANSMISSION;
D O I
10.3934/cpaa.2019007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a function U satisfying a degenerate elliptic equation on R-+(N+1) :-(0, +infinity) x R-N with mixed Dirichlet-Neumann boundary conditions. The Neumann condition is prescribed on a bounded domain Omega subset of R-N of class C-1,C-1, whereas the Dirichlet data is on the exterior of Omega. We prove Holder regularity estimates of U/d(Omega)(s), where d(Omega) is a distance function defined as d(Omega)(z) := dist(z, R-N \ Omega), for z is an element of<(R-+(N+1))over bar>. The degenerate elliptic equation arises from the Caffarelli-Silvestre extension of the Dirichlet problem for the fractional Laplacian. Our proof relies on compactness and blow-up analysis arguments.
引用
收藏
页码:107 / 128
页数:22
相关论文
共 50 条