DYNAMICS OF ONE-ELECTRON IN A ONE-DIMENSIONAL SYSTEMS WITH AN APERIODIC HOPPING DISTRIBUTION

被引:15
|
作者
de Moura, F. A. B. F. [1 ]
机构
[1] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, AL, Brazil
来源
关键词
One-electron; aperiodic hopping energy; Bloch oscillations; METAL-INSULATOR-TRANSITION; EXTENDED SPIN-WAVES; RANDOM-DIMER MODEL; CORRELATED DISORDER; MOBILITY EDGE; ANDERSON MODEL; LOCALIZATION; ABSENCE; POTENTIALS; STATES;
D O I
10.1142/S0129183111016063
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider the effect of an aperiodic hopping distribution on a single electron. The aperiodic sequence of hopping energies was generated by using a sinusoidal function whose phase phi varies as a power-law, phi proportional to n(nu), where n labels the positions along the chain. The exponent nu controls the degree of aperiodicity in the sequence hopping terms. Using the transfer matrix method, we compute the localization length within the band of allowed energies. Our numerical calculations indicate that, for an aperiodic sequence of hopping energies with nu < 1, a new phase of extended states appears in this model. For a pseudorandom hopping distribution with nu > 1, all eigenstates remain localized. In addition, we study the electronic dynamics subjected to an electric field. Our numerical calculations reveals perfect Bloch oscillations for nu < 1. The typical frequency of these oscillations agree with the semiclassical predictions.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 50 条
  • [1] Phase transition in the one-dimensional pair-hopping model with unusual one-electron hopping
    Ding, Hanqin
    Zhang, Jun
    [J]. PHYSICS LETTERS A, 2019, 383 (23) : 2784 - 2788
  • [2] Numerical study of the one-electron dynamics in one-dimensional systems with short-range correlated disorder
    Sales, M. O.
    de Moura, F. A. B. F.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 45 : 97 - 102
  • [3] One-dimensional aperiodic systems in phase space
    Spisak, B. J.
    Woloszyn, M.
    [J]. ACTA PHYSICA POLONICA B, 2007, 38 (05): : 1951 - 1960
  • [4] ELECTRON LOCALIZATION AND HOPPING CONDUCTIVITY IN ONE-DIMENSIONAL DISORDERED-SYSTEMS
    GOGOLIN, AA
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 86 (01): : 1 - 53
  • [5] ENERGY DYNAMICS IN A ONE-DIMENSIONAL APERIODIC ANHARMONIC LATTICE
    Dos Santos, C. A. A.
    Assuncao, T. F.
    Lyra, M. L.
    De Moura, F. A. B. F.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (08):
  • [6] FLUCTUATIONS OF HOPPING CONDUCTIVITY OF ONE-DIMENSIONAL SYSTEMS
    RAIKH, ME
    RUZIN, IM
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1989, 95 (03): : 1113 - 1122
  • [7] TRAP CONTROLLED HOPPING IN ONE-DIMENSIONAL SYSTEMS
    PRIGODIN, VN
    SEIDEL, C
    NAKHMEDOV, AP
    [J]. SOLID STATE COMMUNICATIONS, 1985, 53 (05) : 451 - 455
  • [8] NEW CLASS OF EXACTLY SOLVABLE ONE-DIMENSIONAL DISORDERED ELECTRON HOPPING SYSTEMS
    BRANDT, U
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 40 (04): : 277 - 281
  • [9] PROBABILITY-DISTRIBUTION OF THE DC HOPPING CONDUCTIVITY IN RANDOM ONE-DIMENSIONAL SYSTEMS
    SCHNEIDER, WR
    BERNASCONI, J
    [J]. HELVETICA PHYSICA ACTA, 1981, 54 (04): : 652 - 652
  • [10] TRAP-LIMITED HOPPING IN ONE-DIMENSIONAL AND QUASI-ONE-DIMENSIONAL SYSTEMS
    PRIGODIN, VN
    SEIDEL, C
    NAKHMEDOV, AP
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1985, 128 (01): : 345 - 358