Improved through-plane thermal conductivity of 3D structured composites via BN alignment and AlN surface modification

被引:29
|
作者
Lee, Jooyoung [1 ]
Kim, Jooheon [1 ,2 ,3 ]
机构
[1] Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 06974, South Korea
[2] Chung Ang Univ, Dept Adv Mat Engn, Anseong 17546, Gyeonggi Do, South Korea
[3] Chung Ang Univ, Grad Sch, Dept Intelligent Energy & Ind, Seoul 06974, South Korea
关键词
Through-plane thermal conductivity; Three-dimensional networks; Polymer-matrix composites (PMCs); Anisotropy; BORON-NITRIDE NANOSHEETS; HEAT DISSIPATION; NANOCOMPOSITES; PERFORMANCE; ENHANCEMENT; NETWORK; MATRIX; FILMS;
D O I
10.1016/j.coco.2021.100935
中图分类号
TB33 [复合材料];
学科分类号
摘要
Efficient heat-flow pathways must be built in order to improve the thermal management performance of materials. In this respect, an effective approach is the fabrication of three-dimensional (3D) network structures to generate thermally conductive polymer composites. Herein, aluminum nitride/boron nitride/epoxy (AlN/BN/ EP) composites with a 3D foam structure (3D-AlN/BN/EP) are fabricated to take advantage of the thermal behavior of ammonium bicarbonate and the curing properties of the epoxy resin. The 3D foam-structured composite with a filler loading of 50 wt.% is shown to provide a 657% enhancement in thermal conductivity compared to that of the pure epoxy resin. It is also superior to randomly distributed composite materials. In addition, silane-treated AlN is shown to provide composites with increased thermal conductivity and mechanical strength. Therefore, the process described herein provides an easy way to significantly reinforce the thermal conductivity of polymer composites.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] 3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness
    Liu, Pengfei
    Li, Xiaofeng
    Min, Peng
    Chang, Xiyuan
    Shu, Chao
    Ding, Yun
    Yu, Zhong-Zhen
    NANO-MICRO LETTERS, 2021, 13 (01)
  • [2] 3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness
    Pengfei Liu
    Xiaofeng Li
    Peng Min
    Xiyuan Chang
    Chao Shu
    Yun Ding
    Zhong-Zhen Yu
    Nano-Micro Letters, 2021, 13 (02) : 19 - 33
  • [3] 3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness
    Pengfei Liu
    Xiaofeng Li
    Peng Min
    Xiyuan Chang
    Chao Shu
    Yun Ding
    Zhong-Zhen Yu
    Nano-Micro Letters, 2021, 13
  • [4] Spherical aggregated BN /AlN filled silicone composites with enhanced through-plane thermal conductivity assisted by vortex flow
    Niu, Hongyu
    Guo, Haichang
    Ren, Yanjuan
    Ren, Liucheng
    Lv, Ruicong
    Kang, Lei
    Bashir, Akbar
    Bai, Shulin
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [5] High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing
    Jia, Yunchao
    He, Hui
    Geng, Yi
    Huang, Bai
    Peng, Xiaodong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2017, 145 : 55 - 61
  • [6] Elastomeric thermal interface materials with high through-plane thermal conductivity by 3D printing
    Fan, Yong
    Wang, Yongbin
    Qiu, Jun
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (24)
  • [7] Improved Through-Plane Thermal Conductivity of Poly(dimethylsiloxane)Composites through the Formation of 3D Filler Foam Using Freeze-Casting and Annealing Processes
    Lee, Jooyoung
    Yang, Wonyoung
    Lee, Geunhyeong
    Cho, Youngsung
    Kim, Jooheon
    NANOMATERIALS, 2023, 13 (15)
  • [8] Methodology development for through-plane thermal conductivity prediction of composites
    Suplicz, A.
    Hargitai, H.
    Kovacs, J. G.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 100 : 54 - 59
  • [9] Internal oriented strategy of the hBN composite resin with enhanced in-plane or through-plane thermal conductivity via 3D printing
    Wang, Haohuan
    Huang, Zhengyong
    Li, Licheng
    Zhang, Yingfan
    Li, Jian
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2023, 173
  • [10] Effects of BN surface modification on thermal conductivity of BN/epoxy composites
    Wang W.
    Cao W.
    Chen T.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2018, 35 (02): : 275 - 281