Color Constancy Algorithm of Microscopic Images Based on Autoencoder

被引:0
|
作者
Lan Fangming [1 ]
Peng Zongju [1 ,2 ]
Lu Zhihua [1 ]
Shi Qichao [1 ]
Chen Fen [2 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Chongqing Univ Technol, Sch Elect & Elect Engn, Chongqing 400054, Peoples R China
关键词
image processing; microscopic image; color constancy; autoencoder; angle error estimates;
D O I
10.3788/LOP202158.2010010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Considering the lack of color constancy (CC) dataset in the field of microscopic images and the failure in achieving the expected effect through the cross-dataset training of the CC algorithm, this study creates a microscopic CC dataset using two steps: camera acquisition and simulation generation. Moreover, this study proposes a microscopic image CC algorithm based on an autoencoder. The algorithm uses an improved UNet structure autoencoder for semi-supervised training and simultaneously introduces a new composite-loss function to optimize network parameters, thereby obtaining an accurate restored image color. Experimental results show that the image resolution trained using the algorithm is higher than traditional autoencoders, and the angle error estimates in the NUS-8, RECommended, and self-built microscope CC datasets are smaller.
引用
收藏
页数:9
相关论文
共 25 条
  • [1] Afifi M, SENSOR INDEPENDENT I
  • [2] Bianco S, 2015, IEEE COMPUT SOC CONF
  • [3] Quasi-Unsupervised Color Constancy
    Bianco, Simone
    Cusano, Claudio
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 12204 - 12213
  • [4] A SPATIAL PROCESSOR MODEL FOR OBJECT COLOR-PERCEPTION
    BUCHSBAUM, G
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1980, 310 (01): : 1 - 26
  • [5] Fourier Ptychographic Microscopy Reconstruction Based on Deep Learning
    Chen Yican
    Wu Xia
    Luo Zhi
    Yang Huidong
    Huang Bo
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (22)
  • [6] Cheng DL, 2015, PROC CVPR IEEE, P1000, DOI 10.1109/CVPR.2015.7298702
  • [7] Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution
    Cheng, Dongliang
    Prasad, Dilip K.
    Brown, Michael S.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (05) : 1049 - 1058
  • [8] Das P, COLOR CONSTANCY GANS
  • [9] Elisabetta F G D T, 2004, COLOR IMAGING C, V2004, P37
  • [10] Improving color constancy by discounting the variation of camera spectral sensitivity
    Gao, Shao-Bing
    Zhang, Ming
    Li, Chao-Yi
    Li, Yong-Jie
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (08) : 1448 - 1462