MR-assisted PET respiratory motion correction using deep-learning based short-scan motion fields

被引:5
|
作者
Chen, Sihao [1 ]
Fraum, Tyler J. [2 ]
Eldeniz, Cihat [2 ]
Mhlanga, Joyce [2 ]
Gan, Weijie [3 ]
Vahle, Thomas [4 ]
Krishnamurthy, Uday B. [5 ]
Faul, David [6 ]
Gach, H. Michael [1 ,2 ,7 ]
Binkley, Michael M. [8 ]
Kamilov, Ulugbek S. [3 ,9 ]
Laforest, Richard [2 ]
An, Hongyu [1 ,2 ,8 ,9 ]
机构
[1] Washington Univ, Dept Biomed Engn, St Louis, MO 63110 USA
[2] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[3] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63110 USA
[4] Siemens Healthcare GmbH, Erlangen, Germany
[5] Siemens Med Solut USA Inc, St Louis, MO USA
[6] Siemens Med Solut USA Inc, Malvern, PA USA
[7] Washington Univ, Dept Radiat Oncol, St Louis, MO 63110 USA
[8] Washington Univ, Dept Neurol, St Louis, MO 63110 USA
[9] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63110 USA
关键词
CAPTURE; deep learning; free-breathing; P2P; PET; MRI; respiratory motion correction; IMAGE-RECONSTRUCTION; GADOXETATE DISODIUM; ARTERIAL PHASE; COMPENSATION; TOMOGRAPHY; STRATEGIES;
D O I
10.1002/mrm.29233
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose We evaluated the impact of PET respiratory motion correction (MoCo) in a phantom and patients. Moreover, we proposed and examined a PET MoCo approach using motion vector fields (MVFs) from a deep-learning reconstructed short MRI scan. Methods The evaluation of PET MoCo was performed in a respiratory motion phantom study with varying lesion sizes and tumor to background ratios (TBRs) using a static scan as the ground truth. MRI-based MVFs were derived from either 2000 spokes (MoCo2000, 5-6 min acquisition time) using a Fourier transform reconstruction or 200 spokes (MoCoP2P200, 30-40 s acquisition time) using a deep-learning Phase2Phase (P2P) reconstruction and then incorporated into PET MoCo reconstruction. For six patients with hepatic lesions, the performance of PET MoCo was evaluated using quantitative metrics (SUVmax, SUVpeak, SUVmean, lesion volume) and a blinded radiological review on lesion conspicuity. Results MRI-assisted PET MoCo methods provided similar results to static scans across most lesions with varying TBRs in the phantom. Both MoCo2000 and MoCoP2P200 PET images had significantly higher SUVmax, SUVpeak, SUVmean and significantly lower lesion volume than non-motion-corrected (non-MoCo) PET images. There was no statistical difference between MoCo2000 and MoCoP2P200 PET images for SUVmax, SUVpeak, SUVmean or lesion volume. Both radiological reviewers found that MoCo2000 and MoCoP2P200 PET significantly improved lesion conspicuity. Conclusion An MRI-assisted PET MoCo method was evaluated using the ground truth in a phantom study. In patients with hepatic lesions, PET MoCo images improved quantitative and qualitative metrics based on only 30-40 s of MRI motion modeling data.
引用
收藏
页码:676 / 690
页数:15
相关论文
共 50 条
  • [1] MR-Assisted PET Motion Correction in Dementia
    不详
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (05) : 15N - 16N
  • [2] Rigid-body MR-assisted PET motion correction
    Catana, Ciprian
    van der Kouwe, Andre
    Benner, Thomas
    Byars, Larry
    Michel, Christian
    Hamm, Michael
    Guerin, Bastien
    Ouyang, Jinsong
    El Fakhri, G.
    Sorensen, Gregory
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2009, 50
  • [3] MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects
    Chen, Kevin T.
    Salcedo, Stephanie
    Chonde, Daniel B.
    Izquierdo-Garcia, David
    Levine, Michael A.
    Price, Julie C.
    Dickerson, Bradford C.
    Catana, Ciprian
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (05) : 1288 - 1296
  • [4] Respiratory Motion Correction of PET using Motion Parameters from MR
    Dikaios, Nikolaos
    Fryer, Tim D.
    [J]. 2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 2806 - 2808
  • [5] Correction of respiratory and cardiac motion in cardiac PET/MR using MR-based motion modeling
    Robson, Philip M.
    Trivieri, MariaGiovanna
    Karakatsanis, Nicolas A.
    Padilla, Maria
    Abgral, Ronan
    Dweck, Marc R.
    Kovacic, Jason C.
    Fayad, Zahi A.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (22):
  • [6] MR Image-based PET Respiratory Motion Correction in PET/MR
    Manber, Richard
    Thielemans, Kris
    Hutton, Brian
    Barnes, Anna
    Ourselin, Sebastien
    Arridge, Simon
    Wan, Ming Young Simon
    O'Meara, Celia
    Atkinson, David
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03)
  • [7] Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT
    Maier, Joscha
    Lebedev, Sergej
    Erath, Julien
    Eulig, Elias
    Sawall, Stefan
    Fournie, Eric
    Stierstorfer, Karl
    Lell, Michael
    Kachelriess, Marc
    [J]. MEDICAL PHYSICS, 2021, 48 (07) : 3559 - 3571
  • [8] PET motion correction using simultaneous PET-MR acquisition and MR-derived motion fields
    Tsoumpas, Charalampos
    Mackewn, Jane
    King, Andrew
    Buerger, Christian
    Totman, John
    Schaeffter, Tobias
    Marsden, Paul
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2009, 50 : 532 - 532
  • [9] Statistical evaluation of PET motion correction methods using MR derived motion fields
    Polycarpou, Irene
    Tsoumpas, Charalampos
    Marsden, Paul K.
    [J]. 2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 3579 - 3585
  • [10] Clinical Impact of Respiratory Motion Correction in Simultaneous PET/MR, Using a Joint PET/MR Predictive Motion Model
    Manber, Richard
    Thielemans, Kris
    Hutton, Brian F.
    Wan, Simon
    Fraioli, Francesco
    Barnes, Anna
    Ourselin, Sebastien
    Arridge, Simon
    Atkinson, David
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (09) : 1467 - 1473