Existence and uniqueness for a degenerate parabolic equation with L1-data

被引:74
|
作者
Andreu, F [1 ]
Mazón, JM [1 ]
De León, SS [1 ]
Toledo, J [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
关键词
non-linear parabolic equations; non-linear boundary conditions; p-; Laplacian; accretive operators; mild solutions;
D O I
10.1090/S0002-9947-99-01981-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study existence and uniqueness of solutions for the boundary-value problem, with initial datum in L-1(Omega), u(t) = div a(x, Du) in (0, infinity) x Omega, -partial derivative u/partial derivative eta(a) is an element of beta(u) on (0,infinity) x partial derivative Omega, u(x,0) = u(0) (x) in Omega, where a is a Caratheodory function satisfying the classical Leray-Lions hypothesis, , is the Neumann boundary operator associated to a, Du the gradient of u and beta is a maximal monotone graph in R x R with 0 is an element of beta(0).
引用
收藏
页码:285 / 306
页数:22
相关论文
共 50 条