Killing fields in compact Lorentz 3-manifolds

被引:0
|
作者
Zeghib, A
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we classify flows on compact 3-manifolds that preserve smooth Lorentz metrics.
引用
收藏
页码:859 / 894
页数:36
相关论文
共 50 条
  • [1] Killing vector fields on Riemannian and Lorentzian 3-manifolds
    Aazami, Amir Babak
    Ream, Robert
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (09) : 3948 - 3966
  • [2] EMBEDDING OPEN 3-MANIFOLDS IN COMPACT 3-MANIFOLDS
    MESSER, R
    WRIGHT, A
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1979, 82 (01) : 163 - 177
  • [3] COMPACT DECOMPOSITIONS OF 3-MANIFOLDS WHICH YIELD 3-MANIFOLDS
    MCMILLAN, DR
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 582 - &
  • [4] Geodesic foliations in Lorentz 3-manifolds
    Zeghib, A
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (01) : 1 - 21
  • [5] COMPACT SUBMANIFOLDS OF 3-MANIFOLDS
    SCOTT, GP
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1973, 7 (NOV): : 246 - 250
  • [6] HOMEOMORPHISMS OF COMPACT 3-MANIFOLDS
    SWARUP, GA
    [J]. TOPOLOGY, 1977, 16 (02) : 119 - 130
  • [7] Killing vector fields on compact Finsler manifolds
    Li, Jinling
    Qiu, Chunhui
    Zhong, Tongde
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 88 (1-2): : 3 - 19
  • [8] Recurrent geodesics in flat Lorentz 3-manifolds
    Charette, V
    Goldman, WM
    Jones, CA
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (03): : 332 - 342
  • [9] NILPOTENT GROUPS AND COMPACT 3-MANIFOLDS
    THOMAS, C
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 64 : 303 - &
  • [10] The uniqueness of compact cores for 3-manifolds
    Harris, L
    Scott, P
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1996, 172 (01) : 139 - 150