Automated approach for detection of ischemic stroke using Delaunay Triangulation in brain MRI images

被引:32
|
作者
Subudhi, Asit [1 ]
Acharya, U. Rajendra [2 ,3 ,4 ]
Dash, Manasa [5 ]
Jena, Subhransu [6 ]
Sabut, Sukanta [7 ]
机构
[1] SOA Deemed Be Univ, ITER, Dept ECE, Bhubaneswar, Odisha, India
[2] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore, Singapore
[3] Singapore Univ Social Sci, Dept Biomed Engn, Sch Sci & Technol, Singapore, Singapore
[4] Taylors Univ, Fac Hlth & Med Sci, Sch Medicaine, Subang Jaya 47500, Malaysia
[5] Silicon Inst Technol, Dept Math, Bhubaneswar, Odisha, India
[6] All India Inst Med Sci, Dept Neurol, Bhubaneswar, India
[7] KIIT Deemed Be Univ, Sch Elect Engn, Bhubaneswar, Odisha, India
关键词
Ischemic stroke; Segmentation; Delaunay triangulation; FODPSO; Random forest; DIFFUSION-WEIGHTED MR; LESION SEGMENTATION; INFARCT LESION; CLASSIFICATION; IDENTIFICATION; ALGORITHM; VOLUME;
D O I
10.1016/j.compbiomed.2018.10.016
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is difficult to develop an accurate algorithm to detect the stroke lesions using magnetic resonance imaging (MRI) images due to variation in different lesion sizes, variation in morphological structure, and similarity in intensity of lesion with normal brain in three types of stroke, namely partial anterior circulation syndrome (PACS), lacunar syndrome (LACS) and total anterior circulation stroke (TACS). In this paper, we have integrated the advantages of Delaunay triangulation (DT) and fractional order Darwinian particle swarm optimization (FODPSO), called DT-FODPSO technique for automatic segmentation of the structure of the stroke lesion. The approach was validated on 192 MRI images obtained from different stroke subjects. Statistical and morphological features were extracted and classified according to the Oxfordshire community stroke project (OCSP) using support vector machine (SVM) and random forest (RF) classifiers. The method effectively detected the stroke lesions and achieved promising results with an average sensitivity of 0.93, accuracy of 0.95, JI of 0.89 and Dice similarity index of 0.93 using RF classifier. These promising results indicates the DT based optimized approach is efficient in detecting ischemic stroke and it can aid the neuro-radiologists to validate their routine screening.
引用
收藏
页码:116 / 129
页数:14
相关论文
共 50 条
  • [1] An efficient automated methodology for detecting and segmenting the ischemic stroke in brain MRI images
    Sivakumar, P.
    Ganeshkumar, P.
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2017, 27 (03) : 265 - 272
  • [2] Automatic detection of ischemic stroke using higher order spectra features in brain MRI images
    Acharya, U. Rajendra
    Meiburger, Kristen M.
    Faust, Oliver
    Koh, Joel En Wei
    Oh, Shu Lih
    Ciaccio, Edward J.
    Subudhi, Asit
    Jahmunah, V
    Sabut, Sukanta
    [J]. COGNITIVE SYSTEMS RESEARCH, 2019, 58 : 134 - 142
  • [3] Detection of Ischemic Stroke Tissue Fate from the MRI Images Using a Deep Learning Approach
    Alotaibi, Nouf Saeed
    Alotaibi, Abdullah Shawan
    Eliazer, M.
    Srinivasulu, Asadi
    [J]. MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [4] Melanoma Detection Using Delaunay Triangulation
    Pennisi, A.
    Bloisi, D. D.
    Nardi, D.
    Giampetruzzi, A. R.
    Mondino, C.
    Facchiano, A.
    [J]. 2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015), 2015, : 791 - 798
  • [5] ConnectViz: Accelerated Approach for Brain Structural Connectivity Using Delaunay Triangulation
    Adeshina, A. M.
    Hashim, R.
    [J]. INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2016, 8 (01) : 53 - 64
  • [6] ConnectViz: Accelerated Approach for Brain Structural Connectivity Using Delaunay Triangulation
    A. M. Adeshina
    R. Hashim
    [J]. Interdisciplinary Sciences: Computational Life Sciences, 2016, 8 : 53 - 64
  • [7] Computational Intelligence Approach for Predicting Ischemic Stroke using Brain MRI
    Subudhi, A. K.
    Jena, S. S.
    Mohanty, M.
    Sabut, S. K.
    [J]. PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1707 - 1712
  • [8] Automated Detection of Cavernous Malformations in Brain MRI Images
    Wang, Huiquan
    Ahmed, S. Nizam
    Xu, Hongming
    Mandal, Mrinal
    [J]. 2017 8TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2017, : 17 - 20
  • [9] Automated Ischemic Stroke Classification from MRI Scans: Using a Vision Transformer Approach
    Abbaoui, Wafae
    Retal, Sara
    Ziti, Soumia
    El Bhiri, Brahim
    [J]. JOURNAL OF CLINICAL MEDICINE, 2024, 13 (08)
  • [10] Acute Ischemic Stroke Detection Using Wavelet Based Fusion Of CT And MRI Images
    Mirajkar, Praveen R.
    Singh, ArunVikas
    Bhagwat, Kishan Ashok
    Ashalatha, M. E.
    [J]. 2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 1123 - 1130