Conformal Symmetries in the Extremal Process of Two-Dimensional Discrete Gaussian Free Field

被引:10
|
作者
Biskup, Marek [1 ,2 ]
Louidor, Oren [3 ]
机构
[1] UCLA, Dept Math, Los Angeles, CA 90024 USA
[2] Charles Univ Prague, Ctr Theoret Study, Prague, Czech Republic
[3] Technion, Fac Ind Engn & Management, Haifa, Israel
关键词
MULTIPLICATIVE CHAOS; CONVERGENCE; MAXIMUM;
D O I
10.1007/s00220-020-03698-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the extremal process associated with the Discrete Gaussian Free Field on the square lattice and elucidate how the conformal symmetries manifest themselves in the scaling limit. Specifically, we prove that the joint process of spatial positions (x) and centered values (h) of the extreme local maxima in lattice versions of a bounded domain D subset of C converges, as the lattice spacing tends to zero, to a Poisson point process with intensity measure ZD(dx)circle times e-alpha hdh, where alpha is a constant and ZD is a random a.s.-finite measure on D. The random measures {ZD} are naturally interrelated; restrictions to subdomains are governed by a Gibbs-Markov property and images under analytic bijections f by the transformation rule (Zf(D)circle f)(dx)=law|f '(x)|4ZD(dx). Conditions are given that determine the laws of these measures uniquely. These identify Z(D) with the critical Liouville Quantum Gravity associated with the Continuum Gaussian Free Field.
引用
收藏
页码:175 / 235
页数:61
相关论文
共 50 条
  • [1] Conformal Symmetries in the Extremal Process of Two-Dimensional Discrete Gaussian Free Field
    Marek Biskup
    Oren Louidor
    [J]. Communications in Mathematical Physics, 2020, 375 : 175 - 235
  • [2] Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian Free Field
    Biskup, Marek
    Louidor, Oren
    [J]. ADVANCES IN MATHEMATICS, 2018, 330 : 589 - 687
  • [3] Extremes of the discrete two-dimensional Gaussian free field
    Daviaud, Olivier
    [J]. ANNALS OF PROBABILITY, 2006, 34 (03): : 962 - 986
  • [4] EXTREME VALUES FOR TWO-DIMENSIONAL DISCRETE GAUSSIAN FREE FIELD
    Ding, Jian
    Zeitouni, Ofer
    [J]. ANNALS OF PROBABILITY, 2014, 42 (04): : 1480 - 1515
  • [5] Ballot Theorems for the Two-Dimensional Discrete Gaussian Free Field
    Stephan Gufler
    Oren Louidor
    [J]. Journal of Statistical Physics, 2022, 189
  • [6] Ballot Theorems for the Two-Dimensional Discrete Gaussian Free Field
    Gufler, Stephan
    Louidor, Oren
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (01)
  • [7] Contour lines of the two-dimensional discrete Gaussian free field
    Schramm, Oded
    Sheffield, Scott
    [J]. ACTA MATHEMATICA, 2009, 202 (01) : 21 - 137
  • [8] Near-maxima of the two-dimensional discrete Gaussian free field
    Biskup, Marek
    Gufler, Stephan
    Louidor, Oren
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 281 - 311
  • [9] Percolation for two-dimensional excursion clouds and the discrete Gaussian free field
    Drewitz, A.
    Elias, O.
    Prevost, A.
    Tykesson, J.
    Viklund, F.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 54
  • [10] Convergence in Law of the Maximum of the Two-Dimensional Discrete Gaussian Free Field
    Bramson, Maury
    Ding, Jian
    Zeitouni, Ofer
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (01) : 62 - 123