Neural Network Pruning for Biomedical Image Segmentation

被引:3
|
作者
Jeong, Taehee [1 ]
Bollavararn, Manasa [1 ]
Delaye, Elliott [1 ]
Sirasao, Ashish [1 ]
机构
[1] Xilinx, 2100 Log Dr, San Jose, CA 95124 USA
关键词
U-Net; image segmentation; neural network pruning; biomedical image;
D O I
10.1117/12.2579256
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Instead of manual segmentation, Segmentation using Artificial Neural Networks is very useful in biomedical image analysis. However, deploying artificial neural networks requires large memory footprint and computational costs. In this work, we propose a pruning approach to alleviate these requirements for the U-Net, which is the most popular segmentation neural network for biomedical image. Our approach handles upsampling layers and skip connections, which are essential components in U-Net architecture. We show that our approach achieves 2x speedup, more than 7x size reduction with less than 2% loss in average intersection-over-union (IOU) on PhC-U373 and DIC-HeLa biomedical data set.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Morphable Convolutional Neural Network for Biomedical Image Segmentation
    Jiang, Huaipan
    Sarma, Anup
    Fan, Mengran
    Ryoo, Jihyun
    Arunachalam, Meenakshi
    Naveen, Sharada
    Kandemir, Mahmut T.
    [J]. PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1522 - 1525
  • [2] RACE-Net: A Recurrent Neural Network for Biomedical Image Segmentation
    Chakravarty, Arunava
    Sivaswamy, Jayanthi
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (03) : 1151 - 1162
  • [3] Calibrating the Dice Loss to Handle Neural Network Overconfidence for Biomedical Image Segmentation
    Michael Yeung
    Leonardo Rundo
    Yang Nan
    Evis Sala
    Carola-Bibiane Schönlieb
    Guang Yang
    [J]. Journal of Digital Imaging, 2023, 36 : 739 - 752
  • [4] Calibrating the Dice Loss to Handle Neural Network Overconfidence for Biomedical Image Segmentation
    Yeung, Michael
    Rundo, Leonardo
    Nan, Yang
    Sala, Evis
    Schonlieb, Carola-Bibiane
    Yang, Guang
    [J]. JOURNAL OF DIGITAL IMAGING, 2023, 36 (02) : 739 - 752
  • [5] Neural network for image segmentation
    Skourikhine, AN
    Prasad, L
    Schlei, BR
    [J]. APPLICATIONS AND SCIENCE OF NEURAL NETWORKS, FUZZY SYSTEMS, AND EVOLUTIONARY COMPUTATION III, 2000, 4120 : 28 - 35
  • [6] Dense gate network for biomedical image segmentation
    Li, Dongsheng
    Chen, Chunxiao
    Li, Jianfei
    Wang, Liang
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (08) : 1247 - 1255
  • [7] Deep Guidance Network for Biomedical Image Segmentation
    Yin, Pengshuai
    Yuan, Rui
    Cheng, Yiming
    Wu, Qingyao
    [J]. IEEE ACCESS, 2020, 8 : 116106 - 116116
  • [8] Dense gate network for biomedical image segmentation
    Dongsheng Li
    Chunxiao Chen
    Jianfei Li
    Liang Wang
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15 : 1247 - 1255
  • [9] Automated Object Tracing for Biomedical Image Segmentation Using a Deep Convolutional Neural Network
    Rutter, Erica M.
    Lagergren, John H.
    Flores, Kevin B.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 : 686 - 694
  • [10] Filter pruning for convolutional neural networks in semantic image segmentation
    Lopez-Gonzalez, Clara I.
    Gasco, Esther
    Barrientos-Espillco, Fredy
    Besada-Portas, Eva
    Pajares, Gonzalo
    [J]. NEURAL NETWORKS, 2024, 169 : 713 - 732