Integration on locally compact noncommutative spaces

被引:18
|
作者
Carey, A. L. [2 ]
Gayral, V. [1 ]
Rennie, A. [2 ,3 ]
Sukochev, F. A. [4 ]
机构
[1] Univ Reims, Math Lab, F-51687 Reims, France
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[3] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2500, Australia
[4] Univ New S Wales, Sch Math & Stat, Kensington, NSW 2052, Australia
关键词
Noncommutative geometry; Dixmier traces; Zeta functions; DIXMIER TRACE; OPERATORS; GEOMETRY; ASYMPTOTICS;
D O I
10.1016/j.jfa.2012.04.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an ab initio approach to integration theory for nonunital spectral triples. This is done without reference to local units and in the full generality of semifinite noncommutative geometry. The main result is an equality between the Dixmier trace and generalised residue of the zeta function and heat kernel of suitable operators. We also examine definitions for integrable bounded elements of a spectral triple based on zeta function, heat kernel and Dixmier trace techniques. We show that zeta functions and heat kernels yield equivalent notions of integrability, which imply Dixmier traceability. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:383 / 414
页数:32
相关论文
共 50 条